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ABSTRACT

Supernova remnants (SNRs) are widely believed to be the principal source of galac-

tic cosmic rays, produced by diffusive shock acceleration in the environs of the rem-

nant's expanding blast wave. Such energetic particles can produce gamma-rays and

lower energy photons via interactions with the ambient plasma. The recently reported

observation of TeV gamma-rays from SN1006 by the CANGAROO Collaboration, com-

bined with the fact that several unidentified EGRET sources have been associated with

known radio/optical/X-ray-emitting remnants, provides powerful motivation for study-

ing gamma-ray emission from SNRs. In this paper, we present results from a Monte

Carlo simulation of non-linear shock structure and acceleration coupled with photon

emission in shell-like SNRs. These non-linearities are a by-product of the dynamical

influence of the accelerated cosmic rays on the shocked plasma and result in distribu-

tions of cosmic rays which deviate from pure power-laws. Such deviations are crucial to

acceleration efficiency considerations and impact photon intensities and spectral shapes

at all energies, producing GeV/TeV intensity ratios that are quite different from test

particle predictions. The Sedov scaling solution for SNR expansions is used to estimate

IUniversities Space Research Association



important shock parameters for input into the Monte Carlo simulation. We calcu-

late ion (proton and helium) and electron distributions that spawn neutral pion decay,

bremsstrahlung, inverse-Compton, and synchrotron emission, yielding complete photon

spectra from radio frequencies to gamma-ray energies. The cessation of acceleration

caused by the spatial and temporal limitations of the expanding SNR shell in moder-

ately dense interstellar regions can yield spectral cutoffs in the TeV energy range that

are consistent with Whipple's TeV upper limits on those EGRET unidentified sources

that have SNR associations. Supernova remnants in lower density environments gener-

ate higher energy cosmic rays that produce predominantly inverse Compton emission

observable at super-TeV energies, consistent with the SN1006 detection. In general,

sources in such low density regions will be gamma-ray dim at GeV energies.

Subject headings: acceleration of particles -- cosmic rays -- supernova remnants --

radiation mechanisms: non-thermal -- gamma-rays: theory -- ISM: individual (IC

443)

1. INTRODUCTION

It is widely believed that supernova remnants (SNRs) are the primary sources of cosmic-ray

ions and electrons up to energies of at least ,,, 1015 eV, where the so-called knee in the spectrum

marks a deviation from almost pure power-law behavior. Such cosmic rays are presumed to be

generated by diffusive (also called first-order Fermi) acceleration at the remnants' forward shocks.

These cosmic rays can generate gamma rays via interactions with the ambient interstellar medium,

including nuclear interactions between relativistic and cold interstellar ions, by bremsstrahlung of

energetic electrons colliding with the ambient gas, and inverse Compton (IC) emission off back-

ground radiation. Rudimentary models of gamma-ray production in supernova remnants involving

nuclear interactions date back to the early work of Higdon & Lingenfelter (1975) and Chevalier

(1977), and later Blandford & Cowie (1982). These preceded the first tentative associations of

two COS-B gamma-ray sources (Pollock 1985) with the remnants 7 Cygni and W28. The study

of gamma-ray SNRs remained quietly in the background until the ground-breaking observational

program of the EGRET experiment aboard the Compton Gamma Ray Observatory (CGRO). This

provided a large number of unidentified sources in the super-50 MeV band, seen both in and above

the galactic plane, which led to the suggestion (e.g. Sturner & Dermer 1995) of a possible supernova

origin (see Mukherjee, Grenier, & Thompson 1997 for a discussion of this population). A handful

of these EGRET sources have significant associations with relatively young SNRs (Esposito et al.

1996).

Following the EGRET advances, the modeling of gamma-ray emission from supernova rem-

nants began in earnest with the paper of Drury, Aharonian, & V61k (1994), who computed (as did

Naito and Takahara 1994) the photon spectra expected from the decay of neutral pions generated

':t | i



in collisionsof shock-acceleratedions with those of the interstellarmedium (ISM). These works

assumed that the ionshave power-law spectraextending to ,,_1014eV or beyond. Since then, a

number ofalternativemodels examining other (i.e.electromagnetic)radiationprocesseshave been

presented. These include the work of Gaisser, Protheroe, & Stanev (1998) and Sturner et al. (1997),

who did not treat non-linear effects from efficient particle acceleration, and the recent analysis of

Berezhko & VSlk (1997), who solved the fully momentum-dependent diffusion-convection equation

and included non-linear effects, but treated ion injection in a parametric fashion. Here, we include

the injection and acceleration of both ions and thermal electrons in non-linear shocks and describe

cases where emission from energetic electrons is likely to dominate ion emission, as expected in low

density regions where flat inverse Compton gamma-ray components become important. This fact

was exploited by Mastichiadis & de Jager (1996) and Pohl (1996) to propose that SN1006 should

exhibit such a component, a timely prediction given the subsequent report of a spatially-resolved

(to the NW rim of the shell) detection of SNi006 by the CANGAROO experiment (Tanimori et

al. 1997) at energies above 1.7 TeV. Non-linear spectral models of diffusive shock acceleration that

include the back-reaction of the accelerated particles on the shock structure do not produce exactly

power-law particle distributions, and generate electron and ion spectra which differ considerably

from each other. Central to predictions of photon emission from SNR shock acceleration are the

details of this spectral curvature, the maximum energies of the ions and electrons, their relative

abundances, and the enhancements of density of heavy ions relative to protons caused by non-linear

shock modification.

In this paper, we calculate both the ion and electron spectra resulting from non-linear, cosmic

ray-modified SNR shocks and, using these, compute photon emission over the entire range of the

electromagnetic spectrum from radio waves to gamma-rays. The non-linear shock model we use is

described in detail in Ellison, Jones, & Reynolds (1990), Jones & ElIison (1991) and ElIison, Baring,

& Jones (1996), and consists of a Monte Carlo simulation of the transport of particles through a

steady-state, plane-parallel shock. The chief advantage this technique has over other non-linear

shock models is that particle injection can be treated in a largely self-consistent fashion, and this

feature has been tested against particle distributions observed at the Earth's bow shock (Ellison,

MSbius, & Paschmann 1990) and in linear applications to interplanetary shocks (e.g. Baring, et

al. 1997). The non-linear aspects of shock acceleration have been shown to be consistent with the

spectral index and curvature inferred for relativistic electrons emitting radio synchrotron radiation

in the Tycho and Kepler remnants (Reynolds & Ellison, 1992), and have very recently been shown

to produce the observed cosmic ray chemical composition if normal (i.e. cosmic abundance) ISM gas

and dust are accelerated in smoothed SNR shocks (Meyer, Drury, & Ellison 1997; Ellison, Drury,

& Meyer 1997). By imposing mass, momentum, and energy conservation, we obtain a steady-state

solution which self-consistently includes ion injection and acceleration and simultaneously yields the

average shock structure and complete particle distribution functions. As with previous applications

of our Monte Carlo technique, we assume that the scattering properties of the particles, thermal and

energetic, obey simple scattering laws, in accord with heliospheric shock observations and results

of plasma simulations. Via this prescription, our ion injection model embodies the essential plasma
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properties at least a.s far as gross observables are concerned.

A new feature included here is a parametric model for thermal electron injection and suprather-

mal scattering. With two adclitional parameters, we calculate the complete distributions and ab-

solute acceleration efficiencies of both ions and electrons in shocks capable of accelerating particles

to TeV and super-TeV energies. This allows us to simultaneously describe photon emission from

ions and electrons, over a wide range of photon energies, in a single shock with a single set of

environmental and shock parameters. The electron-to-proton ratio at energies above --_ 1 GeV

depends strongly on these parameters and, in conjunction with multi-wavelength observations of

SNRs, permits us to constrain these parameters. Our model spectra include Synchrotron radiation,

bremsstrahlung, inverse Compton scattering off the cosmic microwave background, and the decay

of neutral pions produced in collisions of nucleons. In this latter nuclear process, we find that con-

tributions from accelerated alpha particles are comparable to those from protons despite a cosmic

abundance ratio of _ 0.1, mostly since heavier elements are accelerated more efficiently by the

Fermi mechanism in non-linear shocks.

The steady-state Monte Carlo technique precludes an exact dynamical description for a rem-

nant as it expands into the ISM. To model such time dependence, we use standard Sedov solutions

for SNR evolution in homogeneous media to estimate the shock speed V,k and radius R_k at

any age. We then calculate the maximum energy Emax to which particles can be accelerated ac-

cording to the well-known Fermi acceleration formula resulting from the diffusion approximation.

Our best-approximation steady-state model is then obtained by including an upstream free escape

boundary set by the diffusion length of the particles with Emax. In this way we incorporate into our

Monte Carlo simulation the most essential aspects and consequences of time-dependence in SNR

expansions: _k and Emax are the two key quantities for any non-linear model of acceleration in

expanding SNR shocks. This simple picture using the Sed0v evolution does not account for the

energy from cosmic rays escaping upstream from the expanding shock: hence a real SNR shock

will expand less rapidly than the Sedov solution predicts. In addition, our picture omits adiabatic

gains/losses interior to the shock, which can be influential in determining Em_x (Berezhko & V51k

1997). Despite these shortcomings, we argue that this hybrid technique overcomes the major deft-

ciencies of our steady-state and plane shock approximations and contains the essential non-linear

effects that are expected in efficient particle acceleration. Work is currently in progress (Berezhko &

Ellison 1998, in preparation) to detail the differences between this steady-state, planar Monte Carlo

model and the time-dependent, spherical SNR shock model of Berezhko, Yelshin, & Ksenofontov

(1996). Preliminary results suggest the differences are small.

We report here the parameters required for the maximum particle energies obtained by diffu-

sive shock acceleration to be consistent with current upper limits from the Whipple and HEGRA

atmospheric-_erenkov telescopes on- r_mnants with putat!ve EGRET source associations. We _ind

that maximum particle energies of a few TeV for ISM densities near _ i proton cm -3 are n0t incon-

sistent with Fermi acceleration at supernova remnant shocks. At the same time, our models predict

relatively weak emission in the 100 MeV-10 TeV range for low upstream densities, _ 1 cm -3, which

i'I |_
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poses no problem if the unidentified EGRET sources catalogued by Esposito et al. (1996) are not

connected with shell emission. This scenario permits acceleration to much higher energies, though

we find it difficult, in accord with many previous papers, to accelerate up to the knee in the cos-

mic ray spectrum at ,-_ 1015 eV without resorting to unrealistically low ISM densities. The lower

density models may be most appropriate to sources out of the galactic plane like SN1006, where

super-50 TeV electrons are inferred from both X-ray (presumably synchrotron) and TeV gamma-

ray (probably inverse Compton) observations (see Koyama et al. 1995 and Tanimori et al. 1998,

respectively). Taken together, these complementary results illustrate a general property of our

modeling, and also of non-linear shock acceleration theories in general, namely an anti-correlation

between the EGRET band flux and the maximum energy of cosmic ray acceleration. We also pro-

duce broad-band emission spectra for a range of parameters and specifically compare our results

to observations of IC 443. In the gamma-ray band, we have little trouble reproducing the spectral

index and flux of the EGRET source 2EG J0618+2234 provided that inverse Compton emission is

relatively unimportant, a conclusion reached by Gaisser, Protheroe, & Stanev (1998). However, we

find that the unusually flat radio spectrum of IC 443 is not well modeled with standard Fermi ac-

celeration without resorting to extremely inefficient electron scattering. If this flat radio spectrum

cannot be attributed to thermal contamination or free-free absorption, then it is probable that

some source other than particle acceleration at the SNR blast wave is responsible for the photon

emission.

The results and discussions of this paper identify a number of important issues that should form

focuses of future theoretical research, including the radial/angular extent of X-ray and gamma-ray

emission, the modeling of flat spectrum radio sources, spatial variations in radio, X-ray and gamma-

ray spectral indices, identifying which physical processes are responsible for the non-thermal X-ray

and gamma-ray flux, the role of magnetic-field obliquity around the shell, the e/p ratio and a more

complete description of electron injection, and cosmic ray abundances and production up to the

knee. Efforts in this direction should anticipate the expected improvements in the near future in

sensitivity and angular resolution of ground-based and satellite X-ray and gamma-ray telescopes.

2. FERMI ACCELERATION IN SUPERNOVA REMNANTS

2.1. The Monte Carlo Calculation of Fermi Acceleration

Apart from the electron injection model introduced here, the Monte Carlo simulation we use

to model the diffusive shock acceleration of ions has been described in detail elsewhere (e.g. Jones

& Ellison 1991; Baring, Ellison, & Jones 1993; Ellison, Baring, & Jones 1996). It is a kinematic

model, closely following Bell's (1978) approach to diffusive acceleration, where the simulation is

used to calculate, in effect, solutions to a Boltzmann equation for particle transport involving a

collision operator, without making any assumption concerning the isotropy of particle distribu-

tions. Particles are injected at a position far upstream and allowed to convect into the shock (i.e.
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mimickingthe interstellarmedium exterior to a remnant that is overtaken by the blast wave), dif-

fusing between postulated scattering centers (presumably magnetic irregularities in the background

plasma and self-generated turbulence) along the way. As particles diffuse between the upstream

and downstream regions, they continually gain energy (for a simulation example, see Fig. 3 of Bar-

ing, Ellison, & Jones 1994) in accord with the Fermi mechanism. Our models here are restricted to

infinite plane, steady-state, parallel shocks where the angle Om_ between the upstream magnetic

field and the shock normal is assumed to be zero everywhere. As detailed below, the maximum

linear scale in the shock, the diffusion length of the highest-energy particles, is always less than

1/4 of the shock radius, Rsk, and almost all of the flow deceleration (in the shock frame) occurs

within AR/Rsk < 0.1. In a Sedov spherical blast wave, post-shock expansion and velocity gradients

can also affect the particle distribution, causing adiabatic losses (Berezhko 1996); we expect these

effects to be confined to the highest-energy particles, so that the maximum energies we obtain at

later times may be slightly inaccurate. However, at earlier times the diffusion length scale is even

less than 0.1Rsk, and the plane-shock approximation should be accurate. The non-linear Monte

Carlo technique has been generalized to oblique shock geometry (i.e. shocks with OBn > 0° ; e.g.

Ellison, Baring, & Jones 1996), and shock obliquity undoubtedly plays an important role in super-

nova remnant considerations, for example in the work of Fulbright & Reynolds (1990) and Reynolds

(1996); treatment of it is deferred to future work.

2.1.1. Particle Scattering

We assume that particles of speed v (measured in the local plasma frame) scatter isotropically

in this plasma frame with an exponential distribution about a collision time tc - A/v for mean

free paths A. The particles make large angle scatterings, mimicking diffusion in strongly turbulent

plasmas where ]SBI/]B I _ 1. Such strong turbulence is commonly observed in heliospheric shock

environments (e.g. Hoppe et al. 1981; Tsurutani, Smith, & Jones 1983; Balogh et al. 1993),

and has been inferred near young supernova remnants (Achterberg, Blandford, & Reynolds 1994).

Note that Ellison, Baring, & Jones (1996) observed that the acceleration process was only weakly

dependent on the type of the scattering as long as Osn is not close to 90°: pitch-angle diffusion

(small-angle scattering) and large-angle scattering generated similar particle distributions for a

wide range of shock parameters. In the upstream region, the scattering centers move at a speed,

VA relative to the bulk flow speed u(x), where vA -- B/x/4r;nprap _- 2.2 (B/l_G)(np/cm-3) -x/2

km s -1, is the Alfvdn speed (here, B is the magnetic field, np is the proton number density, and

mp is the proton mass. Thus, the scattering is inelastic in the plasma frame (unless particle speeds

far exceed the Alfvdn speed) and energy can be transferred from the superthermal population to

the background thermal gas. This effect is discussed in more detail in Section 2.1.3.

We adopt a phenomenological mean free path to describe the complicated plasma microphysics

in a very simple prescription. Specifically, we take the scattering mean free path parallel to the

mean magnetic field, Ai, of alIions, thermal and super-thermal, including both protons and heavier



species,to be
hl = n"g, (1)

where rg = pc/(QeB) is the g_croradius and r/ is a constant, independent of ion species, energy,

and position relative to the shock. Here, p is the particle momentum measured in the local plasma

frame, Q is the charge number, and -e is the electronic charge. The spatial diffusion coefficient

along the field is then _ = hiv/3. Note that for shocks of speed Vsk, _/Vsk approximates the

upstream diffusion length scale. The minimum value of r/is unity, the so-called Bohm limit, where

diffusion is comparable along and perpendicular to the mean magnetic field: this corresponds to

strong turbulence, Id_B[/IB] ,,, 1. The aptness of a power-law prescription, hi o¢ pa, to shocked

plasma environments is supported by particle observations at the Earth's bow shock (where 1/2 <

< 3/2, Ellison, M_Sbius, & Paschmann 1990), deductions from ions accelerated in solar particle

events (Mason, Gloeckler, & Hovestadt 1983, where 1/2 < a < 4/5 ), and also from turbulence in

the interplanetary magnetic field (Moussas et al. 1992). On the theoretical side, plasma simulations

(Giacalone, Burgess, & Schwartz 1992) suggest a mean free path obeying hi c¢ p= with a ,,_ 2/3.

We believe that the assumption of hi _ p is simple, physically realistic, and representative of the

Fermi acceleration process.

P.1.2. Electron Scattering and Injection Model

The injection of thermal electrons into the Fermi process is poorly understood. This is a

prominent problem in astrophysics in general, and for supernova remnants in particular, given few

or no palpable radiative signatures of energetic ions. In contrast, evidence of non-thermal electrons

in remnants is common, including ubiquitous observations of radio synchrotron emission, and now

detections of non-thermal X-rays (Koyama et al. 1995; Keohane et al. 1997; Allen et al. 1997)

from three SNRs and the report of gamma-rays from SN1006 (Tanimori et al. 1997, 1998). While

protons resonantly create and scatter off Alfv_n waves at all energies from thermal upwards, and

so have a ready supply of magnetic turbulence for providing spatial diffusion (for example see

Lee's 1982 model of the Earth's bow shock), it is unclear whether there is a significant presence in

shocked plasmas of the much shorter wavelength waves, i.e. whistlers, that resonate with thermal

and suprathermal electrons. Levinson (1992, 1996) included whistlers in his quasi-linear theory

description of wave generation and electron diffusion and acceleration at kinetic energies between

,_ 5 keV and 3 MeV. Levinson's model therefore may not describe electron injection from truly

thermal energies in the case of old SNRs, where the plasma temperatures are well below 5 keV, but

may apply to younger remnants with shock velocities of several thousand km s -1. Galeev, Malkov

& VSlk (1995) have suggested that oblique, lower hybrid waves can be excited by ion beams

and that these waves can then accelerate thermal electrons. However, this mechanism remains

highly speculative and is restricted, in any case, to quasi-perpendicular shocks. Hence, below a

few keV, the situation remains inconclusive, being complicated by the fact that whistlers can be

strongly damped in warm or hot plasmas; Alfv_n modes usually escape this fate. We note that the
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low energy electron injection issue can be circumvented in alternative scenarios, such as that put

forward by Ellison, Jones, & Ramaty (1990) and Chan 8z Lingenfelter (1993), where the decay of

nucleosynthetic material provides an injection of MeV ieptons into the Fermi process.

Our electron model assumes that, at high electron momenta, the electron mean free path Re is

proportional to the electron gyroradius, exactly as in equation (1). At lower momenta, however, we

modify equation (1) by introducing an arbitrary momentum, Pcrit [or, equivalently, kinetic energy

Ecrit - \/Pcritc2 2 + (met2)2 - me c2 ], below which electrons have a constant mean free path, i.e.

f r]rg,e(Pcrit ) -- constant, P __ Pcrit (2)
[, r] r_,e(p) , P > Petit ,

where rs,e(p) -- pc/(eB) is the electron gyroradius for the electron momentum p. Keeping )'e

constant below p¢_it is one way of describing inefficient scattering at low energies. In addition, we

inject electrons, not with typical upstream thermal energies (e.g. kT ,,_ few eV) or downstream

Rankine-Hugoniot temperatures, but at some fraction of the downstream proton temperature Tp,DS

which results from the thermalization over the subshock velocity jump: kTp,DS "_ rnp(Vsub -- u2) 2,

where Vsub is the flow speed at the subshock, u2 = Vsk/r is the downstream flow speed, and r is

the overall shock compression ratio. In plasma shocks, electrons are in fact heated at the subshock

by plasma processes (e.g. Cargill & Papadopoulos 1988) such as electric fields induced by particle

motions and electron-proton charge separations, Given that this heating takes place mainly at the

subshock, which can be much weaker than the overall shock (e.g. rsub "_ 2.5, see Figure 4 below), we

parameterize the electron heating by setting the downstream thermal electron temperature, Te,DS,

to
_ 1 2
23k T,,DS = h _ m, (AV, ub) , (3)

where AVsub = Vsub -- u2. In principle, the parameter fe _< 1 can be varied to match X-ray

observations. In practice, we inject electrons in our simulation far upstream with a temperature

Te,inj - T,:DS, since the energy the electrons gain in their first crossing of the shock from compression

is generally much less than k Te,DS. This prescription results in electron temperatures consistent

with those deduced from observations of thermal X-ray emission in SNRs (for a recent collection of

observational studies, see Zimmermann, Triimper, _: Yorke 1996). Note that we treat electrons as

test particles and do not include any influence they have on the shock dynamics. The relaxation of

this approximation is deferred to future work, though electrons are dynamically unimportant for

most of our models and likely to be so for most astrophysical conditions.

We believe that equations (2) and (3) constitute a simple model for electron injection that

addresses the most salient features of Levinson's (1992) developments, without adding unnecessary

parameters whose determination is beyond current observational capabilities. In particular, equa-

tion (2) models the expected inefficiency of electron scattering compared to ions at thermal and

suprathermal energies. Our prescription guarantees, through the parameters Pcrit and re, accept-

able injection efficiencies for thermal electrons in smoothed non-linear shocks, primarily because
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they need to sample long length scales in order to experience the greatest possible compressive

power of the shock. 1

Since this is the first presehtation of our electron injection model, we give a simple example to

illustrate its basic properties. Using the artificial shock flow profile shown in Figure 1, we inject and

accelerate electrons and protons keeping the shock profile fixed, i.e. we are doing a test-particle

example and do not attempt to find a self-consistent solution. Both electrons and protons are

injected at x -- 0 in this test case with _-function distributions at 1 keV; in our self-consistent

models addressed later, we always inject particles far upstream. The protons are scattered using

equation (1) and the electrons using equation (2). The densities in scalar momentum space, f(IPD,

are shown in Figure 2, where we plot Ipl2"sf(Ip[) to flatten the spectra. The top curve (solid line)

is the proton distribution, while the lower dashed curve is the electron distribution with pc_it = 0

(i.e. for this example, electrons and protons have identical functions for their mean free paths).

From test-particle Fermi acceleration theory (e.g. Blandford & Ostriker 1978), we expect that

f(lpl) dlPl c¢ Ip[ -¢ dlPl with a - reff + 21 ' (4)

where f(]p[)dlpl is the number density between [p[ and ]p[+d]p I and reff is the effective compression

ratio "felt" by particles with a particular upstream diffusion length. For a spatial diffusion coefficient

= Av/3, the upstream diffusion length, LD, is approximated by

Av r3u_LD = --- = . (5)

For low energy particles with -0.2_rgl < -LD < 0, r¢_ ---- 2 (a = 4) (note that we define the

upstream direction to be negative in Figure 1). As particles increase in energy, the magnitude of

LD increases and for -10_?rgl < -LD < -0.2_rgl, particles will feel reff _-- 3 (a = 2.5). For

-LD < -10viral, re_ = 4 (a = 2). The different reff's translate into spectral breaks which are

clearly visible in Figure 2. The heavy vertical lines are calculated from equation (5) and indicate the

momenta corresponding to LD = -0.2 _7rgl and -10 _ rgl for electrons and protons. The spectral

breaks occur within a factor of two of LD predicted by equation (5). Note that the distributions

plotted are calculated downstream from the shock and the fact that the proton "thermal" peak

is at a much higher momentum than the electron peak reflects both the fact that if protons and

lWe note that the results we present here for electron injectionefficienciesare in partial disagreement with

our earlierresultsin Ellison & Reynolds (1991). In that paper (specificallyFigure 7 in that paper), we claimed

that electron injectionefficiencieswere extremely sensitiveto the injectionenergy and that electronsinjected with

energies lessthat several 10'sof keV would fallmany orders of magnitude below protons in the super-GeV domain.

Our current resultsfor the electron injectionefficiency,are somewhat lesssensitiveto injectionparameters and do not

show the strong decrease in electron normalization compared to protons we claimed earlier.We believe our current

resultsare correct and that our previous claim was an error. In any case,thiserrorisrestrictedto the lowest energy

electronsand the shape of the electronspectra above ,_ 100 keV isunaffected. In particular,our modeling of the radio

synchrotron emission (Reynolds & Ellison 1992) is unaffected by thissince only the shape of the electron spectrum

at relativisticenergies was used.
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electrons have the same energy, the proton momentum will be V/_p/me greater, and that protons

receive a much larger energy boost in a single shock crossing than do electrons. The dotted curve

in Figure 2 shows f(lPl) for electrons with Pcrit = 1.5 × 10 -3 mpC (i.e. Ecrit = 3 MeV). With this

pcrit, and keeping Einj = 1 keV, the upstream electron diffusion length, at injection, is

rlr (pcnt) ni
LD _ 3u(z) --_ --0.26 r/rgl • (6)

The position -0.26 firs1 is indicated in Figure 1 by an arrow. Thus, the lowest energy electrons

will have an upstream diffusion length such that refr = 3 and this is reflected in the fact that the

spectrum at the lowest energies has a __ 2.5. Once electrons obtain -LD < -10r/rgl, their slope

flattens to a --- 2, as occurred with the dashed curve.

One important consequence of our choice of R cc rg is that, except for the possibility that

the values for r/ may differ, non-relativistic electrons and protons of a given energy E have the

same upstream diffusion length, feel the same effective compression ratio, and hence will attain the

same slope (provided E _> Ecrit, since then r/e - r/p ); such equality is true also for fully relativistic

particles. Deviations from this behavior arise in the trans-relativistic regime, thereby generating an

adjustment in the relative normalizations of the distributions of electrons and protons. Electrons

at E < Ecrit will possess steeper distributions than those at E > Ecrit. This simple picture can

be altered by other injection conditions if, for example as indicated in Figure 2, the proton energy

after a single shock crossing is well above the electron energy. Note that in a smooth shock, the

less efficiently electrons are scattered, the more efficiently they will be accelerated. This behavior is

clearly illustrated in Figure 2, where the slope obtained at a particular energy is determined by the

effective compression ratio that a particle feels as it scatters back and forth across the shock. The

further upstream a particle diffuses, the greater the effective compression ratio and the flatter the

subsequent spectrum at a given energy, corresponding to greater acceleration efficiency. At electron

energies well above an MeV, the combined effect of Ecrit and fe is just to scale the intensity of the

electron spectrum: the larger Ecrlt (corresponding, say, to greater damping of whistler waves)

and/or fe, the more efficiently the electrons are injected and accelerated, but the spectral shape

stays constant at high energies.

2.1.3. Smoothed, Non-Linear Shocks

While most applications of shock acceleration theory to astrophysics are test-particle ones (e.g.

see Jones and Ellison 1991; Baring 1997, for discussions), non-linear effects become important

in strong shocks when the energy density in accelerated particles is comparable to the thermal

gas pressure. If this is the case, the flow hydrodynamics are modified by the backpressure of

the accelerated particles, forcing the upstream plasma to decelerate forming a precursor to the

discontinuous viscous subshock. In our Monte Carlo simulation, the spatial structure of the shock

is determined by iteration of both the average flow speed throughout the shock and the overall

compression ratio, until the mass, momentum, and energy fluxes are constant everywhere; typical

_:1I i



-11-

velocity profiles are depicted in Figure 4 (discussed below). The non-linearity of this problem is

manifested through the feedback of the particles on the flow velocity, which in turn determines the

shape of the particle distribution. The net effect that emerges is one where the overall compression

ratio, from far upstream to far downstream of the discontinuity, ezceeds that of the test-particle

scenario. This phenomenon was identified by Eichler (1984), and Ellison & Eichler (1984), and arises

because (i) high energy particles escape from the shock which reduces the overall energy density

and pressure allowing the compression of the downstream gas to increase, and (ii) production of

relativistic particles softens the equation of state of the gas, also allowing the net compression to

increase. Losses due to cooling can also generate very large compression ratios during the radiative

phase of supernova remnant evolution. As far as shock dynamics are concerned, radiative cooling

via the escape of photons is completely analogous to the escape of particles.

We note that the results presented here include non-adiabatic heating of the upstream thermal

gas through the generation and dissipation of Alfv6n waves in a manner similar to that assumed

by McKenzie & VSlk (1984) and Markiewicz, Drury, & VSlk (1990). The overall acceleration

efficiency depends critically on the strength of the subshock which, in turn, depends on the amount

of heating in the precursor. If heating is minimal, as with adiabatic compression, the subshock

will be strong and the injection and acceleration of particles at the subshock will be efficient. This

will result in a large escaping energy flux at the highest energies and a large overall compression

ratio. On the other hand, if heating beyond that from adiabatic compression takes place, the

subshock will be weaker, injection and acceleration will be less, and the escaping energy flux and

overall compression ratio will be lower. This effect is discussed in deta_l in Berezhko, Yelshin, &

Ksenofontov (1996) and we use their technique for approximating the heating due to Alfvdn wave

dissipation. Briefly, it is assumed that cosmic rays generate Alfv6n waves which rapidly saturate.

At this point, the background gas is heated at the same rate as energy from the cosmic rays is

transfered to the Alfv_n waves, independent of the details of the damping mechanism. In addition,

we follow Berezhko, Yelshin, & Ksenofontov and assume that the upstream Alfv6n waves propagate

primarily toward the shock so that the Speed of the upstream scattering centers responsible for

particle acceleration is reduced by the Alfvdn speed. Downstream, we assume the waves are frozen

in the fluid. An important difference between our treatment of Alfv6n wave dissipation and that of

Berezhko, Yelshin, & Ksenofontov is that they assume that the Alfvdn waves saturate at 8B .-. B,

i.e. the Bohm limit, while we keep r/in equation (1) a free parameter. As Berezhko, Yelshin, &

Ksenofontov describe, the effects of this heating are most important at high Alfv6n Mach numbers

and can dramatically reduce the overall compression ratio from values ,-, 100 in weak magnetic

field conditions to values not much above the test-particle value in strong magnetic fields. A paper

detailing the implementation of this effect in the Monte Carlo simulation is in preparation (Berezhko

& Ellison 1998).

As long as the diffusion coefficient is an increasing function of energy, pure power laws are

not produced in non-linear shocks. Since higher energy particles have longer diffusion lengths,

they sample a broader portion of the flow velocity profile, and feel larger compression ratios.
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Consequently,theseparticleshavea flatter power-lawindex than those at lower energies, thereby

driving the pressure in a non-linear fashion. The severity of the non-linearity is determined by

the overall scale of the shock-precursor which couples to the diffusion length dm_x "" n(Em_)/Usk

of the highest energy particles in the system. This defines the scale of the turbulent foreshock

region, beyond which waves generated by the shocked plasma do not penetrate into the ISM. We

discuss how the maximum energy Em_ is determined in Section 2.3 below; for now, we remark

that acceleration can be limited by particles escaping if they diffuse sufficiently far ahead of the

shock, of the order of a few tenths of the shock radius. More commonly for young SNRs such as

Cas A, the finite age of a SNR shock limits the time available for particle acceleration, giving a

lower maximum energy.

In the Monte Carlo simulation, we limit the acceleration by introducing an upstream free

escape boundary (FEB) at the distance, dFEB = dmax, ahead of the shock. Shocked particles

reaching the FEB stream freely across it and are lost from the system (i.e. to the interstellar

medium outside) effectively truncating the acceleration process. This boundary could correspond

to the finite curvature of a real SNR shock, in which case it would scale as some fraction of the shock

radius, or it could correspond to the finite-age limit as we discuss below. Note that the relevant

size of the acceleration region could be further constrained by the presence of dense neutral or

incompletely ionized material (Drury, Duffy, & Kirk 1996), since such regions strongly suppress wave

generation. We model the downstream region as a uniform flow, ignoring the radial dependence

of the flow speed that emerges from scaling solutions (e.g. Sedov 1959). This approximation is

acceptable as long as dmax <<: Rsk, and if this applies, adiabatic losses/gains are small, So we

neglect them in this paper. Note that Berezhko (1996) finds that downstream adiabatic heating

and geometrical effects in a spherical blast wave increase the maximum energy somewhat above

the finite-age limit in a plane shock. Berezhko contends that such increases arise implicitly because

dm_x approaches ,,, 0.1P_k. Such modifications to our approach may prove necessary at late times,

as discussed in Section 2.3.2.

2.2. SNR Blast Waves and the $edov Solution ....

Initial ejection velocities in supernovae are of order 5 x 103 - 2 x 104 km s-1 (e.g. Chevalier

1981), and the ejecta push a blast wave into the ISM. Initially, the forward moving blast wave

expands relatively freely, but the actual evolution depends on the spatial density profile of the

ej_ta and of the surrounding, pre-supernova material; for power-law variations of ejecta density

with radius, Chevalier (1982) found a self-similar driven wave solution in which the outer blast wave

radius, Rsk, varies as a power, m, of time between 0.57 and 1 (i.e. Rsk c¢ t _n and Vsk oc tm-1 )

depending on the power-law exponents in ejecta and circumstellar medium. As the swept-up mass,

Mswept, increases, eventually this self-similar evolution is broken, and a gradual transition takes

place toward a full Sedov self-similar solution, i.e. m = 0.4 (e.g. Cioffi, McKee, & Bertschinger

1988). Such a transition, at times t ,,, ttrans, marks the epoch where the mass, 41rR_3kP1/3, of the

7 1 i_
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interstellar medium (of mass density pl ) that has been swept up by the blast wave has come to

dominate the mass, Mej, of the supernova ejecta.

While the evolution of anyreal SNR may be extremely complex, particularly due to variations

in the pre-supernova environment, the gross features of the evolution after ttrans can be modeled

simply with the standard Sedov (1959) relations for shock speed and radius. For times tssz >ttrans,

but before the shock becomes radiative, we assume the outer shock radius, Rsk, and speed, Vsk,

obey these relations, i.e.

R,k = V,k pl z .s.. ; t,.. > (V)

In these expressions, Ess is the energy of the supernova explosion _ = 1.15 (e.g. Shu 1992), and

energy losses from cosmic rays escaping from the shock are neglected. We then make the following

definitions for the transition between the quasi-free expansion and Sedov phases, using the criterion

that the swept-up mass equal the ejected mass: Mswept - (4_r/3) 3RtransPl = Mej, defining Rtrans as

the radiusofthe outerforwardshock at the transition,and where Pl - 1.4_p,lmp isthe unshocked

ISM density (np,1isthe unshocked proton number densityand hereafterwe assume the ISM has

cosmic abundances). Itfollowsthat

Rtran, - \_-_ Pl ) "_ 1.9 n I- \M®] pc. (8)

Using Rtrans, we define the time of the transition from the standard Sedov solution, i.e.

t,ra,,- (R_n'_-'-!_)'/2 (£s_'_ -'/2,"_-1 / __ 90 cm_/(c:y.___"_n' -'/s (' £s_\ 1Terg,] _-'/2 ('M-_s/'\M®] yr, (9)

and the shock speed at the transition as,

Vtrans = _ \"_'1 ] ",ran, --- 8200 \10$i_erg / kMej km s -1 . (10)

If we assume that Cs_ = 1081 erg and rip, 1 -" 1 cm -3, then SN Ia with ejected mass of Mej _" M®

have Vtr_ns "_ 8000 km s -1, while SN II with M_j ,_ 4Me have Vt_, _ 4000 km s-1.

While the above definitions are clearly approximations and alternative ones could be made,

these are simple, they model the most prominent features of SNRs in homogeneous media, and

they are appropriate to the accuracy of current observations and model approximations.

2.3. Acceleration Times and Maximum Particle Energies

The maximum energy that can be attained by ions in diffusive shock acceleration is determined

by one of two approaches: (i) by equating the acceleration time as a function of energy to the age

of the remnant (for the free expansion or early Sedov phase), or (ii) if the diffusion length of the

highest energy particles is comparable to the shock radius (which occurs later in the Sedov phase),

by capping that length at some fraction of the shock radius, namely 25%.
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2.3.1. Maximum Energy as a Function of Time

Consider particles (possibly thermal) injected into the acceleration process at a momentum pi

in a shock with Ul ( u2 ) representing the upstream (downstream) component of flow speed normal

to the shock in its rest frame (which is uniquely defined since we consider plane-parallel shocks),

and _:1 and _ being the upstream and downstream spatial diffusion coefficients in the direction

normal to the shock. Here and elsewhere, the subscript 1 (2) always implies quantities determined

far upstream (downstream) from the shock, and the negative x-direction will denote the shock

normal. Using the diffusion equation, the standard form for the acceleration time, r_, to a given

momentum Pmax, is found to be (e.g. Forman & Morrill 1979; Drury 1983)

to(p) = -us + "

Since the interstellar medium is effectively stationary in the observer's frame relative to the ex-

panding shock front, Ul -_ V,k. Equation (11) is strictly valid only in the diffusion approximation

(i.e. for v >> ul) and hence is appropriate for our applications to relativistic energies here.

If we use equation (1), relate the upstream and downstream diffusion coefficients via _2 - g_l

(defining g), and assume that V_k is constant in time (corresponding, for example, to the free

expansion phase of a SNR), the inversion of equation (11) yields a rate of energy gain

d--'{" r(l+gr) _ _ _,103km s-1 eV s -1 . (12)

Here BI is the far upstream (interstellar) magnetic field and we have assumed W= constant across

the shock. For a maximum energy Em_ (much larger than the injection energy) corresponding to

p_, this integrates to give an acceleration time

r - 1 \3--'_] 103 km s -1 yr, (13)

For g = 0, particles spend virtually no time in the downstream region; for g = 1 the mean free

path is independent of the upstream or downstream region; and for g = 1/r (r = ul/u2 is the

shock compression ratio), themeanfre e path is inversely proportional.................... to the background density,

so that particles spend similar times on either side of the shock. Generally we favor g = 1/r,

which assumes that the field turbulence that is responsible for particle diffusion traces the plasma

density. Such an assumption (a_lopted for example by Draine & McKee 1993) is suggested by

the expected field compression (B2/B1 = r ) at quasi-perpendicular shocks, and appears to be

supported by Ulysses magnetometer data at highly oblique interplanetary shocks (Baring et al.

1997). Note, however, that particles of the highest energies would be expected to spend somewhat

more time diffusing in the upstream region outside the expanding shell due to its convex shape,

thereby favoring g > 1/r scenarios. Note also that the proportionality ra _ Emax is a consequence

of the ), _ r$ assumption. It follows that if the shock speed is constant, the maximum energy
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obtainablefor a SNRshockof anage ts,R is

Em_(ts.R) "_ E tsar-

where

t... < t,ra.s , (14)

f 771/1".\-1/6

r-1 (BI) nlEtrans --- 60 r(l+gr)r I _ 'Xcm-'/-1/3 _._j _) TeV (15)
&N

is the maximum energy ions achieve at ttrans and is obtained from equation (13) using our definitions

of Vtrans, ttrans, and Rtrans. As an example, for r = 9, g = l/r, rI = 10, EsN = 1051 erg,

Mej = M®, B1 = 3 x 10 -6 G, and rip,1 = 1 cm -s, we find that Vtra_ -_ 8200 km s -I, ttrans _ 90

yr, and Etrans _- 2.6 TeV for protons and electrons. Berezhko (1996) obtains a similar form to

equation (15), with a slightly larger coefficient because of his treatment of expansion and the

associated adiabatic effects.

From equation (15) it is clear that particularly energetic supernova explosions or large ISM

field strengths are required to generate cosmic rays above 1014 eV and subsequently populate the

"knee" in the cosmic ray distribution. Note also, that Etr_ has a fairly weak dependence on the

ISM density, but one which becomes important at very low densities. Furthermore, equation (15)

depends on the charge of the species but not the mass and hence is identical for protons and

electrons, provided that Pmax far exceeds the critical electron momentum petit discussed above.

The maximum energy in equation (14) does not result in abrupt cutoffs to the distributions of

the accelerated populations, but rather marks the energy about which quasi-exponential turnovers

appear: spatial diffusion near the FEB smears out the energy of the cutoffs. If we use Equations (9),

(14), and (15) to estimate Em_ for very young remnants like SN1987A, it quickly becomes clear that

these remnants will take several decades to accelerate particles to energies beyond a few TeV. For

£SN "_ 10sl erg, Mej "" M®, and tsNa = 10 yr, Er, ax "" 7 TeV. Protons of this energy produce pion-

decay photons of substantially lower energy (by a factor of a few); similarly, electron bremsstrahlung

photons are on average about one-third the energy of the primary electrons. IC photons produced

by 7 TeV electrons have energies of less than 1 TeV. Thus we expect that SN1987A will not be

a bright TeV gamma-ray source anytime in the next decade, contrary to the suggestion of Kirk,

Duffy, & Ball (1995).

In determining Emax at any time, it must be noted that it is some weighted function of

the injection history, as well as the acceleration history of the highest energy particles. Hence,

besides the unknowns in the shock processes, the SNR remnant environment and its evolution,

the fact that the rate per unit area at which particles are injected into the shock is dependent
2

on a remnant's evolutionary phase complicates the picture. This rate is proportional to RskVsk,

an intrinsic variation that provides a rapid increase in injection during the free expansion phase.

However, in the Sedov phase, the number of protons per unit time that are crossed by the shock is

(16)dt -
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a slowly decaying function of time. For purposes of our Em_ estimate, we will neglect particles

accelerated during the free expansion phase and assume that the rate at which the shock overtakes

ambient particles in the Sedov phase is independent of time. This assumption marks an important

distinction between our calculation and Berezhko's (1996). He obtains considerably higher max-

imum energies because of strong acceleration in the free-expansion phase, which we neglect here

because of the relatively small number of particles injected then. Hence, in the Sedov phase, if we

continue to assume that A = r/rg, equation (12) yields:

Emax(tsNR) _ 5Etrans[1- (tsN_ -1/5]kttrans/ ; tsNR > tt_, (17)

where we have assumed that (r - 1)/[r(1 + gr)] is a weakly varying function of time. In fact,

the compression ratio, r, will vary with time as the shock Mach number and Emax change, but

this variation will become smaller at later times. This solution for E_x includes the acceleration

history of particles at all times during the Sedov phase, and asymptotically approaches 5 Etr_n, at

late times. The further inclusion of particles accelerated during the free expansion phase would

only modify this formula to Etr_,[6 - 5(ts,R/tt_.)-l/5], a small change, but one that encompasses

the highest energy cosmic rays. The reader is referred to Berezhko & VSlk (1997) for an estimate

of how these highest energy particles influence the "),-ray emission.

2.3.2. Maximum Energy as a Function of Shock Precursor Scale

As the remnant evolves, the maximum extent of the precursor outside the outer shock will be

determined by the diffusion length ahead of the shock, drpB, of the highest energy particles in the

system at its current age, whose energy is Emax(ts,R) (as determined from equation [17]). Since

the diffusion scale is _ nx/Vsk, one obtains, for fully relativistic particles,

&ge
r/rg.maxC r/ E__ _a,e = Emax(ts,,) (18)

dFEB '_ 3Vsk = 3QeB1 Vsk , --max

where we have used the superscript 'age' to indicate that the maximum energy is determined by

the age of the remnant. The distance to the FEB defines the full width of the shock precursor, and

must be a small fraction of P_k in order for the plane-parallel shock simulation to be applicable to

quasi-spherical shells. In the Sedov phase, the combination of equations (7), (15), and (17) yields

Rsk -----3 r(1+gr) \ttran,/ ( _ (19)
\titan, / j '

and it is clear that if this phase lasts iong enough, dFEB/P_k will' become greater than unity,

rendering our scheme for the termination of acceleration inconsistent. A similar t_/s_ dependence

was noted by Kang & ,]ones (1991). The precise age at which dFEB/Rsk = 1 is a strong function

of the assumed value of g, and to a lesser extent of r. In practice, we place our upstream free
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escape boundary at a distance dFEB (equation [18]) ahead of the shock if dFEB/Rsk <: f <: 1. If

dFss/Rsk > f, we set dFEB --" fRsk. In this case, the maximum energy is given by

size ,_ _
Ema x _ f B VskRsk (20)

t ]-OryTyr] '

where we use the superscript 'size' to indicate that this energy is constrained by the remnant size.

The arbitrary factor f, which we set equal to 1/4 in all of the work here, is included to

ensure that the self-generated magnetic turbulence from the highest energy particles is localized

(as discussed just below) to the precursor of the spherical shock. The transition at dFEs/Rsk --

f = 1/4 is, in effect, a transition from age-limited acceleration at early times to size-limited

acceleration at late times. By our definitions, this transition occurs when dFzs/(fP_k) = 1, that

is, when tsNRIttrans = (3fr2g + 3fr + 2r - 2)s/(2r -- 2) 5 . For r ,,_ 9, f --- 1/4, and g = l/r, the

transition occurs at ts_/ttrans _ 20, i.e. acceleration of the highest-energy particles ceases when

their diffusion lengths approach fP_k for much of the Sedov phase, the scenario that Berezhko,

Yelshin, & Ksenofontov (1994) prefer. However, if g = 1, the acceleration is age-limited for a

much larger range of times (up to tsN_/ttrans "_ 3 X 103), as in the considerations of Lagage &

Cesarsky (1983). We do not attempt to model acceleration into the radiative phase which begins

at approximately trad _-- 2.9 X 104 (np,1/cm-3) -9/17 (£ss/1051erg) 4/17 yr (Blondin etal. 1997), and

therefore is well beyond the ages of the young remnants considered here.

Hence, the combination of size-limited and space-limited acceleration is implemented in our

steady-state Monte Carlo model by placing a free escape boundary at a distance, dFEB, upstream

from the shock, where

dFEB -- min )" _/ E___ fRsk} f
1

(21)
].3QeB1 Ysk ' ' = "4"

The maximum energies produced by this procedure are shown in Figure 3. The lower three thick

curves all have z/ = 10, B1 = 3 x 10-6 G, rip,1 = 1 cm -3, EsN = 1 x 1051 erg, and Mej = M®

with choices for g as indicated. The thick solid line labeled (b) has the same 77, B1, £sN, and

Mej parameters as above with g = 1/r and np,i = 0.01cm -3. For the uppermost solid line labeled

(c), which shows maximum energies well above 1015 eV, we have selected parameters that are

especially tuned to yield a high maximum energy, i.e. are appropriate for particle acceleration up

to the "knee" in the cosmic ray spectrum. In this case, we have used r}= 1 (i.e. Bohm diffusion with

A ,_ rg), g = l/r, B1 = 10 × 10 -s G, np,]= i0-3cm -3, £s_ = 10 x 1051 erg, and Mej = 10M®. For

convenience, we have taken r = 8.5 in all plots although the actual r will depend on the particular

parameters used.

While clearly an approximation, we believe this scheme for setting the maximum energy by

converting the time-dependent effects of Sedov dynamics into size-limited acceleration is accurate

enough to allow us to describe the essential non-linear effects in a convenient and realistic fashion.
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It differsqualitativelyfrom the time-dependentanalysesof Berezhko (1996) and other researchers

(e.g. Drury, Markiewicz, & VSlk 1989; Kang & Jones 1991; Berezhko, Yelshin, & Ksenofontov

1994), principally because of omissions such as adiabatic energy gains in the decelerated remnant

interior downstream of the outer shock, the complex interplay between geometry and acceleration

history, and the contributions of free expansion phase cosmic ray acceleration to that in the Sedov

epoch. Berezhko (1996) observes that these additional features can increase the maximum energy

of acceleration by factors of 2-3, which wilt in turn affect the non-linear feedback between the Fermi

process and the hydrodynamics. However, we note that a significant contribution to this increase

in Emax above our estimates may be due to Berezhko's assumption that cosmic rays find the inte-

rior of the remnant impenetrable due to the establishment of large scale hydrodynamic turbulence

via Raleigh-Taylor instabilities, and Berezhko's consequent imposition of a downstream reflecting

boundary. In fact, it is probable that the presence of such turbulence and associated field amplifi-

cation (e.g. see Jun & Norman 1996) will reduce the scale-length for diffusion, thereby increasing

downstream escape of cosmic rays and lowering the maximum energy. Therefore, clearly there is

some degree of subjectivity in the choice of Em_,, being not tightly-constrained by observations;

our own choice is motivated by its convenience.

2.3.3. Loss Processes for Electrons

Of the various loss processes that influence the particles accelerated at young SNRs, only

synchrotron and inverse Compton losses for electrons are important for a wide range of parameters

(Coulomb losses only become important for old remnants, e.g. Sturner et al. 1997). The rate of

synchrotron energy loss in a field B is given by Lang (1980). For inverse Compton (IC) losses under

the conditions we envision, the most important source of seed photons is the primordial cosmic

microwave background radiation; other radiation fields contribute less than 20% (e.g. Gaisser,

Protheroe, & Stanev 1998) to IC cooling. TheIC loss rat e is given by a similar expression to the

synchrotron loss rate, obtained simply by substituting the radiation energy density for magnetic

field energy density. The field strength with the same energy density as the 2.73 K background

radiation is Bcbr _-- 3.32 × 10 -6 G, leading to the compact formula describing both synchrotron and

inverse Compton losses:

2

( ) ( )dE __ -0.034 eV s -1 (22)

In oblique shocks, a particle undergoing acceleration spends time both upstream and down-

stream in magnetic fields of varying strength. This makes it impossible to get a precise measure

of the loss rate without detailed knowledge of the shock geometry. In the general oblique case, we

can set B = FB1 with 1 _< r _< r, and r = r gives an upper limit to the loss rate. Here, however,

we model only parallel shocks where the mean magnetic field doesn't vary through the shock and

equation (22) can be used directly with B - B1. By comparing equations (12) and (22) we obtain
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an upperlimit to the electroncutoff energy in the Sedov phase, i.e.

-1

x \_] \ 1--_yryr] TeV.

(23)

For our Monte Carlo calculations, we implement equation (23) with F = 1. A similar cutoff energy

was obtained by Sturner et al. (1997). In Figure 3 we show equation (23) as light dotted lines. The

leftmost dotted line gives the electron cutoff energy for the lower solid line example (a), the middle

dotted line gives Ecutoe for the rip,1 = 0.01 cm -3, 77-- 10 example (b), and the rightmost dotted

line gives Ecutoff for the rip,1 = 10 -3 cm -3, r/= 1 example (c). Clearly, electron acceleration will

be essentially unaffected in the high density ISM throughout the Sedov phase, but can be severely

truncated in lower density regions at all times. In the highest Emax example in Figure 3, where

parameters were chosen to optimize cosmic ray production, protons can obtain energies two orders

of magnitude higher than electrons during most of the SNR evolution.

3. PHOTON PRODUCTION MECHANISMS

Having outlined the relevant processes involved in energetic particle production, we now de-

scribe how photons are produced once particle distributions are obtained. Unless otherwise stated,

all photon energies are expressed as ¢_, the gamma ray energy in units of mec a, and we assume

cosmic abundance for helium (i.e. nile,1 -- 0.1rip,l) and that the helium is fully ionized so that

the electron number density is he,1 -- 1.2 np,l. For the purposes of this paper, we neglect contri-

butions from species other than protons, fully stripped helium ions, and electrons. For a shock-

accelerated distribution of electrons or ions, (dJ/dE)e,i, the number density per unit kinetic energy

is (4rr/ve,i)(dJ/dE)e,i, and the number of photons emitted per unit volume per second in the range

¢_ to ¢_ + d¢_ takes the form

dt • ,i '
(24)

where dn_(Ee,i, ¢.y)/dt is the emissivity of a single particle, either an electron or an ion, of kinetic

energy Ee,i. We consider four processes: pion decay emission, bremsstrahlung, inverse Compton

scattering, and synchrotron radiation, and note that, as discussed in Section 3.1 below, emission

due to secondary electrons (i.e. pairs produced via the decay ot" r + created in ion-ion collisions) is

negligible. If a source is at a distance dsNR, with an emission volume Vs,,_, the number of photons

per unit area per second per unit photon energy arriving at Earth is [dn.y(¢_)/dt]VsN_/(4_rd_NR).
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3.1. Pion Decay Radiation

We first consider 7r° dec_ay emission resulting from pions generated in ion-ion collisions: p +

P "-+ It° -+ 7 q-7, etc. This pr6cess has been popular in discussions of gamma-ray emission

from supernova remnants dating from the early work of Higdon & Lingenfelter (1975) to the more

extensive analyses of Drury, Aharonian, & Vhlk (1994) and Naito & Takahara (1994), and plays a

prominent role in the modeling of the diffuse galactic gamma-ray background (Bertsch et al. 1993,

Hunter et al. 1997). Here, we adopt a modified scaling model for pion production, the details of

which can be found in Baring & Stecker (1998).

The scaling concept, originally devised by Feynman (1969), is usually invoked at cosmic ray

hadron energies above 10 GeV. It assumes that the Lorentz invariant differential cross-section

Ed3a/dp 3 approaches a function that is independent of the fast hadron's energy as it tends to

infinity. A variety of scaling descriptions exist, and all of them, including ours, determine this

function via empirical fits to experimental data. Scaling models work well for kinetic energies up to

hundreds of GeV, beyond which quantum chromodynamics (QCD) becomes important and scaling

violations ensue. Such deviations from scaling behavior in this regime are accounted for in a fairly

simple manner in the model of Baring & Stecker (1998) by adopting non-scaling corrections to the

total cross-section which extend the usefulness into the super-TeV range. At low hadron kinetic

energies, corresponding to photons produced between ,,, 20 MeV and 200 MeV, an isobaric model

(Stecker 1971) that is discussed at length in Baring & Stecker (1998) is appropriate. We adopt

non-scaling corrections in this regime also, so that our computations only underestimate photon

spectra by ,,_ 20-30%. Minor improvements to this can be achieved using a hybrid scaling-isobaric

approach (see Dermer 1986a,b; Baring & Stecker 1998).

Consider first proton-proton collisions. Baring & Stecker (1998) use a radial scaling (RS)

model, where the Lorentz invariant differential cross-section E daa/dp3 is approximated by a func-

tion that depends on two variables: (i) the component of pion momentum p_ transverse to the

cosmic ray proton (or ion) beam direction, and (ii) the radial scaling variable xa, which is the ratio

of the center-of-mass (CM) frame pion Lorentz factor 7; to 7;,max, the maximum possible value

of 7;- Note that hereafter, asterisks denote quantities evaluated in the CM frame of the colliding

protons. Pion production kinematics dictate that ")';,max = [2(7p -- 1) -b p_]/[2#_r_/2(Vp + 1)] for

p_ = m,_/mp = 0.1438. Baring & Stecker (1998) adopt the form for Ed3a/dp 3 obtained by Tan

& Ng (1983), which was applied separately to _r+ and 7r- production data: the average of these is

taken as the cross-section for 7r° creation by invoking isospin conservation in strong interactions.

For given transverse momentum p; and 7;, there are two solutions for the pion Lorentz factor

7_, namely 7_ = 7cm (7; q-/3crePT), where p}* = x/(7_) 2 - 1 - (p;)2. Here p_ is the longitudinal

momentum of the pion, i.e_alongthe direction defined by one 0fthe incoming protons. The Lorentz

factor 7cm = _/(Tp + 1)/2 is that corresponding to the boost between the CM and laboratory (i.e.

'I li-;
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ISM) frames. The expression for the differential photon production rate is then

= %,,m=c d-l 
•_,_ m_'r TH

(25)

{ 0(7+ -- 7-) + 0(7F- -- 7-) } (Ed3a'\ ,
/ dz_
-, 1 ,,

where np is the ambient proton density, and 7- = (me�mr) [¢_+m_/(4m_¢_)] is the minimum pion

Lorentz factor permitted by kinematics for pions decaying to produce photons of energy ¢_. The

functions in equation (25) are Heaviside step functions that are zero for z < 0 and unity otherwise.

The proton distribution in equation (25) can be obtained from omni-directional fluxes produced

in the Monte Carlo shock simulations via Np(Tp) = [4rCmpC2/Vp](dJ/dE)p • Also, 7T. -_ 1.298 is

the proton Lorentz factor corresponding to the threshold of pion production. The limits on the

za integration are defined by 1/7_,max < xa _< 1, while those for p[ are given by the constraints

that 7_ >- 7-, according to the appropriate term in equation (25). For monoenergetic protons,

this differential spectrum closely resembles results produced by the PYTHIA code (described in

St6strand & van Zijl 1987) in the range 10 < 7p < 1000, and for power-law protons it compares

well with predictions of Gaisser, Protheroe, _z Stanev (1998).

In the strong interaction, neutrons interact with virtually the same properties as protons.

Hence heavier species such as alpha particles basically provide additional supplies of nucleons, and

the collisions of individual nucleons can be described in the above manner. However, care must be

taken to account for the nuclear binding of heavier elements. Orth &5 Buffington (1976) posited

that the inclusive cross-section for cosmic rays of mass number Acr colliding with ISM target nuclei

of mass number A,sM is
[A3/s A3/8 - ,_2

a _. k.-cr + --tSM 1] aVp__o X (26)

While experimental data on inelastic collisions involving nuclei heavier than hydrogen are sparse,

this prescription is appropriate for proton-helium interactions, but its accuracy is unclear for heavier

nuclei such as Fe, which are therefore omitted from consideration here.

3.1.1. Secondary electron production

Primary electrons, i.e. those directly accelerated by the Fermi process, dominate the con-

tributions of electron emission. Secondary electrons and positrons are produced via the decay of

charged pions that are created in pp and p(_ collisions, and the cross-section for these modes

is comparable to that of the neutral pion modes. Hence, the rate of pair production in pp col-

lisions is roughly dn± (Ee)/dt "" n2pc ar___rox (fEe), where f is a factor of the order of a few

that accounts for the pion production inelasticity. If the pairs are permitted to build up without

escape for the entire remnant lifetime, then one obtains the maximal estimate for the secondary

pair density: n+ (Ee) "., ts_a n_c avv..,rO x (fEe). Remembering that the timescale for pp collisions
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is tpp "" (npCapp_rox) -1 , and that the primary electron density is n e .'_ rip, then the accumulated

pair density can be written as n± _ nets_R/tpp. The timescale tpp for collisions involving 1 GeV-1

TeV protons is typically of the order of 107 years, immediately leading to the conclusion that the

primary electron density far exceeds that of the secondaries in young SNRs. Hence the contribution

of secondaries to the bremsstrahlung, inverse Compton and synchrotron emission can be neglected.

This fact was pointed out by Mastichiadis (1996) for the specific case of synchrotron radiation.

3.2. Bremsstrahlung

Electrons will produce bremsstrahlung radiation as they scatter off the ambient gas. Hence,

the rate of photon production, dn.r(Ee, e_)/dt, in the energy interval between e_ and s-r q- de_ by

an electron of kinetic energy Ee takes the standard form

dt = (rip+ 4n.o) o_p(E., (27)

where E_ is the gamma-ray energy in units of raec 2. Here the electron-ion cross-section, O'e_p(E¢, g-y),

differential in photon energy (i.e. integrated over photon and final electron angles), is the famous

Bethe-Heitler cross-section (Bethe & Heitler 1934; see also Jauch &: Rohrlich 1980), evaluated in

the Born approximation; it is used for any electron energy, relativistic or non-relativistic. We

note that the ultrarelativistic form for the e-p cross-section [e.g. see equation (15-101) of Jauch

& Rohriich i980] is the same as Ol given in equation (h2) in the Appendix. The electron speed

re is the relative velocity in bremsstrahlung collisions. The Bethe-Heitler formula applies to both

protons and alpha particles, with a charge-dependence ae-p oc Z 2 . This leads to the np -{-4nile

factor multiplying ae-p in equation (27). Coulomb corrections to the Bethe-Heitler cross-section,

such as through the Sommerfeld-Elwert factor (Elwert 1939), become important only for projectile

electron speeds considerably less than c/10; we omit them from our considerations since they are

only marginally important given our electron temperatures of a few keV.

The situation for the electron-electron cross-section, a¢-e(Ee, e_), is more complicated. The

full quantum electrodynamical expression for the angle-integrated cross-section, differential in pho-

ton energy, was first derived by Haug (1975). The result is extremely long (over a page of algebra),

and is numerically cumbersome given that it contains terms that are individually divergent (to

several orders) in photon energy as E_ -+ 0. This unwieldiness motivates us to use other ex-

pre_!ons that are_d.eri_v_ from_ asymptptic !imitsffo r no_-ffela_tivist!c (F=.edyushin ,1952; Gari.b yan

1953) and ultrarelativistic (Baler, Fadin, & Khoze 1967)__electrons._= These_ _are ....................presentedin detail

in the Appendix, and we choose to switch between the two asymptotic regimes at an energy Of

Ee = 2 MeV .... =

The relative importance of electron-electron and electron-ion bremsstrahlung in the gamma-

ray range can be quickly deduced from the cross-sections listed in the Appendix. For % >> 1 and

e_ >> 1, the e-e cross-section in equation (A1) is dominated by the al term, which coincides with
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the ultrarelativistic limit of the e-p cross-section [see equation (15-101) of Jauch &: Rohrlich 1980].

Hence the emissivities depend only on the target's charge, not its mass. The ratio of electron-

electron to electron-ion contributions to bremsstrahlung is then simply (rip,1 + 2nHe,1)/(np,1 +

4nile,l) --_ 0.86 for photon energies above ,,_ 10 MeV. When the bremsstrahlung collisions involve

non-relativistic species (i.e. for X-ray production), the situation changes and the electron-ion

contributions dominate the emission, since the dipole contribution to non-relativistic electron-

electron bremsstrahlung vanishes. Note also that inverse bremsstrahlung, i.e. radiation produced

in collisions between high energy protons and ISM electrons, contributes insignificantly to the

emissivity. This can be seen from the formulae of Jones (1971): for photon energies E.y << 1, the

differential cross-section for inverse bremsstrahlung is ap-e -_ (16 a r_/3e_) log (0.68 7p/e_) • This

can be compared with the Bethe-Heitler cross-section (e.g. Jauch & Rohrlich 1980) for normal

bremsstrahlung, which in the e_ << 1 limit for % >> 1 becomes ae-p _- (16ar02/3E_) log(27_/E_) ;

it is clear that for meTp/mp ,_ % >> 1, inverse bremsstrahlung provides only minor contributions,

unless the e/p cosmic ray ratio is quite small.

3.3. Inverse-Compton Production of Gamma-Rays

Inverse-Compton (IC) radiation is dominated by cosmic microwave background (CMB) pho-

tons, with the less well-determined IR/optical backgrounds that are local to typical remnants

contributing generally about 10%-15% of the IC flux (e.g. see Gaisser, Protheroe, & Stanev 1998).

For electrons below ,,_ 10 TeV, the scatterings always occur well in the Thomson limit and the

photon energy in the electron rest frame is much less than the electron rest energy: 4%es << 1,

where the seed photon energy (in the lab frame) is esmec 2. However, we must allow for higher

energies than this. For the CMB, e_m_c 2 ,,_ 3kT = 7.1 x 10 -4 eV at the mean energy of the 2.73

K blackbody distribution, so the Thomson limit is strictly valid only for electron Lorentz factors

obeying % << 3.5 x 10 s or Ee <:_ 2 x 1014eV. While this is often satisfied for our calculations,

Klein-Nishina corrections do become important for E¢ _ 3 x 1013eV. This introduces both electron

recoil effects, that limit the maximum energy of the upscattered photons to less than %, and a

drop in the cross-section with increasing electron energy. In our calculations, we use the angle-

integrated Klein-Nishina cross-section, differential in the final energy of the photons, as derived by

Jones (1968, see also Blumenthal & Gould 1970), the standard result adopted by other authors

(e.g. Sturner et al. 1997):

aK._(e_,%;v_) = 2__ 2qlog_q+ l +q_2q2 + 2(1+
esT;

with F -- 4vs% being the parameter that governs the importance (when r _ 1) or otherwise of

photon recoil and Klein-Nishina effects, and with

e7 0 < q _< 1, (29)
q ---- 4_,%(%- e,) '
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where EsmeC 2 is the initial photon energy, _rneC 2 is the upscattered (final) photon energy, and

% - (Ee + rnec2)/mec 2 , as for bremsstrahlung. The constant ro = e2/(mec 2) is the classical

electron radius (aT = 8_r02/3 is the Thomson cross-section). This result assumes isotropic soft

photon fields, the case for the CMB radiation. Clearly the Klein-Nishina decline is manifested

through the last term in equation (28), while the recoil is embedded in the q parameter. For

any seed-photon (dimensionless) energy cs, the maximum scattered photon energy is determined

by setting q = 1, giving ¢,y _< F% = 47_es in the Thomson limit and ¢_ <_ 7c in the extreme

Klein-Nishina limit.

The inverse Compton emissivity for isotropic photon fields can then be written down quickly

(e.g. Blumenthal & Gould 1970, or see Reynolds 1982, for representations in terms of frequency-

dependent photon intensities):

= c/No( o) (30)

where n,(es) is the distribution of seed photons, and Ne(Te) is the electron energy distribution,

that can be expressed in terms of the (dJ/dE), that is computed from our shock acceleration code:

N_(%) = [4rm,c2/v,](dj/dE),. We use this expression with a blackbody photon distribution

e 2 1 0 = kT (31)
n..r(Es) = n,,s(¢,)- _ e_,l 0 _ 1 ' me---_-'Zc'

with T = 2.73 K so that O = 4.6 x 10-10. Here Ac = h/(m_c) is the Compton wavelength. This

form of the blackbody distribution is most appropriate for gamma-ray applications, and is simply

obtained (e.g. see Rybicki & Lightman 1979) from the more familiar textbook form that uses photon

frequencies. By using the multi-component fit to background soft photon distributions in Figure 1 of

Gaisser, Protheroe, & Stanev (1998), we determined that the CMB population contributes ,,_ 90%

of the inverse Compton flux; for simplicity, hereafter, we Use just this background in all our IC flux

calculations.

3.4. Synchrotron Radiation

Using standard references such as Pacholczyk (1970) or Rybicki & Lightman (1979), the syn.

chrotron emissivity from an electron Lorentz factor distribution N¢(%) - [41rmec2/v_](dJ/dE)c

can quickly be written down:

where

Ne(%) F(z) d% cm -3 s -I , (32)

_ v _% (33)F(x) =- x gs/s(z)dz ; x = _'c _c '

is the well-known synchrotron spectral function for monoenergetic electrons, with Ks� 3 being the

modified Bessel function. Here ec -- 3.398 x 10-14B±% 2 the critical synchrotron photon energy

i:l II ]-
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( Pc = ecmec2/(2 _rh) = 4.199 × 106B±7_ is the critical frequency) for an electron of energy %, with

B± being the component of the magnetic field (in Gauss) perpendicular to the line of sight. For

these calculations we assume that the magnetic field is highly tangled and essentially isotropic, as is

indicated by the low polarized fractions observed at radio frequencies in most remnants (Reynolds

& Gilmore 1993). We use Pacholczyk's tabulation of F(z) to perform the integral numerically for

shock acceleration distributions N¢(%), since commonly used approximations such as assuming

that each electron radiates all its synchrotron power at vc can be poor for electron distributions

with cutoffs (e.g. see Reynolds 1998).

4. RESULTS

The results of our calculations fall into two main categories. First, we discuss particle distribu-

tions generated by the Monte Carlo code: their evolution in the Sedov phase and issues of electron

injection and cosmic ray production up to the "knee." Second, we present photon emission spectra,

focusing first on predictions of gamma-rays, then considering the test case of the remnant IC 443,

and finally extending the discussion to broad-band (radio to gamma-ray) spectra.

4.1. Particle Spectra During SNR Evolution

We first produce models where the environmental parameters are taken to be: Ztp, 1 -- 1 am -3,

£s_ = 1051 erg, Mej = M®, and BI = 3 × 10 -s G. For these parameters, Vtrans -_ 8.2 × 103 km s -1,

Rtrans _ 1.9 pc, and ttr_ns -- 90 yr, and in addition, we have model parameters which we take to

be g -- 1/r and _/= 10. We compare results at three ages during the SNR lifetime: 300 years

(V_k --_ 4000 km s-l), 1000 years (V_k _-- 2000 km s-l), and 104 years (Vsk --_ 490 km s-l). To

obtain our steady-state shock solution, we must also know dFEB. As indicated in equation (19),

dpEB depends on the shock compression ratio, r, and r is not known until the non-linear solution is

found. Therefore, as we iterate toward a solution, changing both the shock structure and the overall

compression ratio, dFzs will be iterated with r using equation (19). For each of the three ages, we

thus obtain the self-consistent shock structure and complete ion spectra which show the absolute

injection and acceleration efficiency. With the additional parameter Ec_t for electron injection and

the observed downstream electron temperature, Te,DS (or our parameter re), we obtain the electron

spectrum as well. The parameters for these models (a, b, and c) are listed in Table 1.

In Figure 4 we show the final smooth shock structure for the three ages with the parameters

just listed. A fourth shock (heavy dotted line) will be discussed in Section 4.2 below. In each case,

we have iterated to a solution for the shock profile, as well as the overall compression ratio, and

the final smooth shock conserves (to within a few percent) mass, momentum, and energy fluxes

at all positions from far upstream, through the nearly discontinuous subshock (at x ,,, 0), into

the downstream region where we hold all parameters constant (i.e. we do not include adiabatic
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cooling).Fora descriptionof how the iteration process is performed, see Ellison & Reynolds (1991)

or Ellison, Baring, & Jones (1996). The self-consistent compression ratios we obtain (see labels in

Figure 4), which decline with-tsN_, are well above the Rankine-Hugoniot value of four in all cases.

The escape of particles at the FEB, as well as the lowering of the ratio of specific heats from the

contribution of relativistic particles to the total pressure (see Ellison & Reynolds 1991), causes the

increase in r. This increase is indicated by the downstream portions of the flow profiles where the

test-particle speed (light dashed line) is 0.25Vsk (i.e. r = 4), while the downstream flow speed

for the non-linear shocks is always less than 0.25 V_k. For each age, the shock is smoothed on the

diffusion length scale _ _(Em_)/V_k of the highest energy particles in the system. This upstream

precursor increases in size as the remnant evolves. Note that the distance scale is measured in units

of r/rgl, where rgx = mpVskc/(e B1), so that d_sfance uhits are proportional to Vsk and are different

for each profile (see Table 1 for values of d_.e in pc). Despite this extreme smoothing, a distinct

subshock persists in all cases with an abrupt transition to the downstream state occurring over a

length scale of about one thermaI ion gyroradius. The subshock strength is the main determinant

of the downstream thermal ion and electron temperatures.

In Figure 5 we plot omni-directional particle spectra, d J/dE (i.e. particles per cm _ per sec per

steradian per MeV/A), obtained with the smooth shocks shown in Figure 4. This figure presents

a time history of evolution of particle distributions during a remnant's expansion. In all panels,

the solid and dashed histograms represent the proton and He +2 spectra, respectively, with the

helium injected far upstream from the shock at cosmic abundances, i.e. nHe,1/np,l = 0.1. The

shock structure is determined including the helium contribution self-consistently. All spectra are

calculated in the shock reference frame at a position downstream from the shock, the region of

enhanced density where the gamma-ray emission is expected to be greatest. The spectra here are

all normalized such that np,lVsk = 1 cm -2 s -1 (rip,1 is the far upstream proton number density). The

number density per unit energy-N(E) is (4r/v)dJ/dE, Where v is the particle speed. The dotted

lines in Figure 5 are electron spectra accelerated by the same shock as the protons and helium (note

that for electrons, the abscissa scale is energy, not energy per nucleon 1. Our approximation that

the electrons are test particles will be valid as long as thee/p ratio at relativistic energies is much

less than unity. AII ot_r assumptions concerning diffusion properties are the same i_or electrons

and ions. Note that we have set ne,lVsk = n,,2Vsk/r = 1.2 cm -2 s -1 (i.e., charge neutrality with

fully-ionized helium is assumed), where n¢,z is the downstream number density of electrons and is

calculated by integrating (4fly)d J/dE over all energies. For all three electron examples, Ecrit = 100

keV and f, = 1. ......

The spectra in Figure 5 are "complete" in that they are entire distributions from thermal

energies to the highest energies where the spectra turn over due to particles escaping at the FEB.

Electron losses are not important in any of these examples, but we will show examples later where

they are. The spectra possess an enhancement of He +2 that comes about because the s_mqoth sh_ck

naturally accelerates particles with large mass-to-charge ratios more efficiently (e.g. Jones & Ellison

1991), as they possess longer diffusion lengths and therefore sample larger effective compression

_I :i!:
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ratios. This enhancement, which is discussed at length in Ellison, Drury, & Meyer (1997), permits

He _+ to dominate the proton contribution to the energy density, except for the highest energies

per nucleon. In general, and ia agreement with other non-linear models (e.g. Berezhko, Yelshin, &

Ksenofontov 1996), we find very high efficiencies, easily putting over 50% of the total energy density

in particles above 1 GeV. Equally important, the contribution of He +2 to gamma-ray production is

further enhanced by the factor in equation (26) and can be comparable to that from protons even

though helium is injected far upstream with only 10% of the number density.

Another important feature of the spectra in Figure 5 is that they are not strictly power-laws

(even if plotted on a momentum scale), but show an upward curvature, becoming harder at higher

energies. This effect is masked somewhat for the ions because of the kinematic break at ,,_ mc 2, but

shows up more dramatically for the electrons between ,,, 10 MeV and 10 GeV. The smooth shock,

combined with our assumption that the upstream diffusion length is an increasing function of energy,

causes high energy particles to be accelerated more efficiently than low energy ones, producing the

upwardly curved spectra (e.g. Eichler 1984; Jones & Ellison 1991), and very different spectral

shapes for protons and electrons below a few GeV. In general, when compared to test-particle

results with r = 4, the non-linear spectra are considerably steeper at the lowest energies because

of the weak subshock with compression ratios less than 4. At the highest energies, the non-linear

spectra are flatter than the test-particle ones because the overall compression ratio is greater 2 than

4. At intermediate energies, between ,,_ 1 MeV and 10 GeV (i.e. electron energies responsible for

radio synchrotron emission), the non-linear spectra, particularly electrons, are considerably steeper

than the test-particle predictions.

Finally, in Figure 5 the cutoff from the FEB occurs at energies proportional to the particle

charge (equation 20) so the helium spectrum extends to a total energy a factor of two higher than

the electrons or protons (a factor of two lower in energy per nucleon). Note also that in cases

where electron cooling losses are important, cooling-generated structure can appear in the electron

distribution just below the cutoff energy.

While our Monte Carlo implementation of non-linear shock acceleration uniquely includes the

self-regulation of injection, giving the full ion spectrum self-consistently, some of the other results

of our calculation will be properties of any non-linear shock model. In particular, the concave

spectra will result in any modified shock if the diffusion length increases with energy, since more

energetic particles will then see a larger effective compression ratio. Compression ratios larger

than 4 should also always result from non-linear models that include particle escape, so that the

asymptotic high-energy slope is flatter than the test-particle value.

2Note that the spectral indices at the highest energies, but below the cutoff from the FEB, are larger (i.e. the

spectra are steeper) than o"-- (r q- 2)/(r - 1), the value expected from unmodified shocks with a compression ratio

of r. This is a purely non-linear effect from particle escape and our results are quite close to the analytic estimate of

Berezhko (1996), i.e. _ __ 3.5 q- [(3.5 - r,ub/2)/(2r -- r0ub -- 1)]. Malkov (1997) obtained a similar result.
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4.2. Acceleration of Particles to 10 is eV

IfSNRs are the main so.urcesof galacticcosmic rays,they must be capable of accelerating

ionsup to at least_ 1015eV where the so-called"knee" in the all-particlecosmic-rayspectrum is

observed.Here we considerhow accelerationto energiesconsiderablyhigherthan in our previous

examples willinfluencethe gamma-ray emission. This addressesthe cruciaJquestionof whether

shell-typeremnants can both supply the observed galacticcosmic ray populationand explainthe

emission from the handful of EGRET unidentifiedsourcesthat have SNR associations.From

equation (20) we see that E'imZ_will increase for increased magnetic field, increased Es_, decreased

ambient density, and/or decreased 7- The sensitivity of the maximum energy to r, g, or ts_s is

relatively small. The dependence of Emax on density strongly suggests that it may be difficult for

a given remnant to simultaneously generate cosmic rays out to the knee and radiate sufficiently to

support the detections by EGRET.

To obtain a high maximum energy, we choose r/- 1 (strong scattering), g - 1/r (the scattering

mean free path is inversely proportional to the plasma density), rip,1 -- 10 -3 cm -3, B1 = 10 -5 G,

£sN -- 1052 erg, and Mej - 10M®. These choices result in _trans _ 8240 km s -1, ttr_s _- 1950 yr, and

t_tran s _--- 41 pc. Referring to Figure 3 (top curve), we determine our solution at tsar _- 4 x 104yr,

near the peak in the maximum acceleration energy, where the acceleration changes from being

time-limited to space-limited. This optimization gives a maximum energy of the cosmic rays of

Em_ -_ 4 x 10is eV. At this age, V_k _-- 1340 km s -1 and Rsk _-- 137 pc (Model d in Table 1), and

our non-linearshock solutionyieldsa compression ratio,r __6.5. Figure 3 shows that electrons

willexperienceseverelossesfortheseparameters,so thatthe contributionsof bremsstrahlungand

inverseCompton scatteringat the highestenergieswillbe suppressed. The maximum electron

energy at ts_ = 4 × 104 yr is about 3 x 1013 eV.

In Figure 6 we show the proton (solid line) and helium (dashed line) spectra for this cosmic

ray knee energy example. We also depict the electron spectrum (dotted line) with Ecrit = 0 and

fe - 0.05 (i.e. the electrons are injected with thermal distributions at Te,inj = 1.0 x 10s K).

These Ecrit and fe values have been chosen to provide an (e/p)lOG_V "" 0.02 consistent with cosmic

ray observations (e.g. Mfiller et al. 1995). The cutoff in the electron spectrum from combined

synchrotron and inverse Compton losses is clearly seen as is a slight pile-up of electrons just below

the cutoff. Figure 6 reveals the important result that it is difficult to obtain much higher cosmic ray

energies than these using normally-accepted ISM parameters. Significant juggling of the various

parameters was necessary to increase Em_ to above _ 10 is eV, including a requisite decrease in

the density to an almost untenably low value. The accompanying increase in Em_x came at the

expense of large decreases in photon emissivity: pion decay and bremsstrahlung are proportional to

n_, 1 while inverse Compton is proportional to rip,1. Such trade-offs are inherent in the problem of

simultaneously producing super-100 TeV cosmic rays and copious GeV-TeV gamma-ray emission in

individual remnants. Hence, in accord with many previous expositions, we find it extremely difficult

to generate cosmic rays beyond 10 i5 eV with normal Fermi acceleration in the homogeneous ISM.
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The dotted line in Figure 4 shows the shock structure for Model d and it is quite different from

the three other examples. The main reason for this, besides the much higher Emax and consequently,

longer precursor, is the extremely low Alfvdn Mach number that results from a high B_ and a low

ISM density. For this case, A_A -_ 2.3, the Alfvdn wave heating in the precursor is very strong,

and VA/V_k _ 0.5. The combination of strong precursor heating and a high rA (the scattering

centers move through the upstream plasma at v^) results in a lowering of the acceleration efficiency

and the overall compression ratio, which is only _ 6.5 for this case. Furthermore, the subshock

compression ratio is quite large; rs, b --_ 4.4. The combination of a large rsub and relatively small

r results in less shock smoothing than our previous examples which, in turn, results is little or no

A/Q enhancement of helium over protons, as is evident in Figure 6.

4.3. Examples of Photon Production

In the top panel ofFigure7,we depictphoton spectraproduced by piondecay (dashedlines),

bremsstrahlung (dot-dashedline),and inverseCompton scatteringoffthe CMB radiation(dotted

line)by particleswith power-law momentum distributions,dN/dp c¢ p-2. We note that the p-

He contributionto the pion decay emissionisof the same shape as the p-p one illustrated,but

with a simple multiplicativefactorthatcombines the relativeabundance of He and the factorin

equation (26).Also, e-ebremsstrahlungcontributesa virtuallyidenticalspectrum above 10 MeV

to the e-p one shown. The "vF," format of the figureischosen to illustrateat what energy the

peak power ofthe gamma-rays emerges. Thisdepictionfollowsthe work ofGalsser,Protheroe,&

Stanev (1998),and to facilitatecomparison with theirresults,we use the same spectralshape and

normalizationthey use fortheirFigure 3,i.e.

-- V d/_ -- V _ exp -C-_ut GeV-1 cm-3

including an exponential cutoff with £¢,t = 80 TeV. Here, £ is the total particle energy, E is the

kinetic energy, V is the volume of the emitting source, and the normalization of Gaisser et al.

of a/V = 1 GeV -3 cm -3 for both electrons and protons is used (the electron to proton ratio is

set to one at fully relativistic energies). For this example only, we neglect helium (or heavier ion

species), as in Figure 3 of Gaisser et al. (1998). Alternatively, this distribution can be expressed

as: n(7) = AfT-_f1-3 exp[-7/%u,], where 7 is the particle Lorentz factor and the normalization

constant is Af = 1 GeV/(mc a) , i.e. - 1957 for electrons and __ 1.066 for protons. A prominent

feature of this particular example is that the radiation is dominated by inverse-Compton emission,

which is intrinsically flatter than bremsstrahlung and pion decay radiation due to the Compton

scattering kinematics. The relative importance of the various processes depends strongly on the

ambient density, electron losses, and the (e/p) ratio, as discussed below.

The power-law portions of the particle distributions can be used to derive asymptotic limits

as checks on our computations. For IC scattering, equation (7.31) of Rybicki & Lightman (1979)

can be used to derive an analytic approximation to the spectrum. For e-p and e-e bremsstrahlung,
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sinceboth cross-sectionsasymptoteto the expressionfor al in equation (A2) for ultrarelativistic

electrons, this form can be integrated over the power-law to obtain dn.y(e.y)/dt __ 4Afc_ r_ c [7/2 +

loge(2c_) ] _[_. For pion decay radiation, we note that well above threshold, the photon spectrum

traces that of the parent proton population (e.g. see Baring & Stecker 1998), which results in

an e[ 2 spectrum for the case in the top panel of Figure 7. The normalization of this tracing is

called a spectrum-weighted moment, and is 0.16 for a 7 -2 proton distribution (Gaisser 1990; see also

Drury, Aharonian, & VSlk 1994; Gaisser, Protheroe, _z Stanev 1998). The asymptotic form for pion

decay radiation is then dnT(¢7)/dt _- 0.16A/'app__0x c¢_ 2 • As %ut --+ co, our numerical results

smoothly approach these asymptotic forms for all three processes, thereby providing confirmation

that our integration routines were working correctly. Furthermore, we find good (though not

perfect) agreement of our results with the curves in Figure 3 of Gaisser, Protheroe, & Stanev

(1998), with the slight differences being attributable to assumptions made in the modeling of pion

production and bremsstrahlung. Finally, note that Klein-Nishina corrections to inverse Compton

scattering off CMB photons become important for electron energies exceeding around 20 TeV.

4.4. Gamma Ray Spectra and IC 443 as a Test Case

In the middle panel of Figure 7 we show the individual components for the Vsk = 2000 km s -z

example of Figures 4 and 5 (Model b: Ecrit = 100 keV and fe = 1). In the lower panel we exhibit

the photon emission for our extreme maximum energy example with V_k = 1340 km s -z (i.e. Model

d: Figure 6). It is clear that the relative importance of the various emission mechanisms can vary

greatly depending on the parameters, with the two most important being the ambient density, rip,l,

and the (e/p) ratio at fully relativistic energies, i.e. (e/p)zocev. The cutoff energy, Emax, is also

important for fitting the constraints imposed by observations at TeV energies, and in particular the

overall flux via more subtle feedback effects of the non-linearity of the Fermi acceleration process.

It also influences the radio synchrotron cutoff which will be discussed below. The main determinant

of Emax in our model is z}, which is basically a free parameter within the broad range 1 _ r} _ 100,

though evidence from a variety of origins suggests values of 7/_ 1 - 10 apply to cosmic plasmas.

In a particular source, it may be possible to restrict np,z somewhat from X-ray and gamma-ray

observations and (e/p)zocev by EGRET observations (discussed below). An important feature of

Model b is the importance of He 2+ pion decay emission. The short dashed lines in Figure 7 show the

gamma-ray emission from helium, while the long dashed lines show the contribution from protons.

At photon energies below ,.. 100 GeV, the helium contribution is approximately equal to the proton

contribution for Model b. The same is not the case for Model d since little A/Q enhancement arises,

as discussed above.

It is clear from the large number of parameters that only a limited amount of information will be

obtained from fitting a particular source unless the parameters can be constrained either by better

observations or improved understanding of the plasma physics of shock acceleration. Nevertheless, it

is fruitful to investigate how the various parameters influence the overall photon spectrum. First, as

:] I i
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_p,1 is decreased, the importance of inverse Compton increases relative to bremsstrahlung and pion

decay since inverse Compton emission is proportional to the electron density, while bremsstrahlung

and pion decay depend on the square of the ambient density. The strength of a pion decay bump

at _ 100 MeV gives important clues to rip,1 and (e/p)lOGeV: a weak or non-existent bump implies a

low rip,1 and/or a large (e/p) 10cev. The quality of the data in Esposito et ai. (1996) for the EGRET

unidentified sources with shell-type SNR "counterparts" is insufficient to confirm or exclude the

existence of such a feature. For this reason, the approach of Gaisser, Protheroe, & Stanev (1998)

in using this data to constrain the e/p ratio is presently unrealistic. Besides the existence (or

otherwise) of a pion decay bump, the overall slope of the photon distribution gives information on

the relative importance of inverse Compton radiation compared to bremsstrahlung since the inverse

Compton component possesses a flatter slope. The cutoff energy, Era=, if it can be determined

by TeV observations, also gives useful information: a low Em_ implies some combination of large

r/, high rip,l, and/or large (e/p)locev. In principle, information orr the background magnetic field

strength can be obtained if electron losses become important and the electron spectrum cuts off at

a lower energy than the proton spectrum, e.g. as in the bottom panel of Figure 7. In this case, the

pion decay spectrum may extend beyond the inverse Compton and bremsstrahlung spectra and a

spectral feature may be present. Furthermore, the consideration of X-ray synchrotron cutoffs (e.g.

Reynolds 1996; Allen et al. 1997) can constrain B, and in conjunction with TeV gamma-ray data,

can restrict the permissible regions of the density/magnetic field strength parameter space.

We now apply our model to one specific shell-type SNR with gamma-ray detections reported

in the Esposito et al. (1996) collection, namely IC 443. While Gaisser, Protheroe, & Stanev (1998)

also use 7 Cygni as a test case, the likelihood that its counterpart EGRET source is truly associated

with shell-related emission is reduced by the small EGRET error circle reported in Esposito et al.

(1996), and all but discounted by the refined localization performed by Brazier et al. (1996).

Hence, we regard 7 Cygni as being a weak candidate for producing detectable shell-associated

gamma-ray emission. Based on the discussion of Lozlnskaya (1992), Gaisser, Protheroe, & Stanev

(1998) estimate for IC 443 that the ambient density is rip,1 _ 0.3 cm -3, the distance to IC 443

is about 1.5 kpc, the radius is about 10 pc, and the remnant age is ts_ _ 5000 yr. With these

parameters, we estimate (for standard SN parameters and expansion into a homogeneous medium,

which is clearly not the case for IC 443) a current shock speed _k - 940 km s-1 (Model e in

Table 1), and an Emax somewhat below 10 TeV.

In Figure 8 we present a grid of nine models varying rip,1 from 0.1 to 1 to 10 cm -3, and

(e/p)xocev from 0.01 to 0.1 to 1. In these plots, we also depict the EGRET observations of the

IC 443 region (2EG J0618+2234 data points: Esposito et al. 1996) plus the upper limits from

the Whipple telescope (Buckley et al. 1997, see also Lessard et al. 1995) and the HEGRA array.

Note that there exist upper limits above 10 TeV from the scintillator array experiment in Tibet

(Amenomori et al. 1997); these are not displayed. All plots show the number of photons per cm 2

per sec incident at Earth (i.e., flux) assuming a standard normalization: a source at 1 kpc with an

emitting volume of l/'s_ = 1 pc 3. For the distance (1.5 kpc) and radius (10 pc) estimates of IC443
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givenabove,the photonfluxesin Figure 8 should be multiplied by ,,_ 103/(1.5) 2 ,,_ 400 (assuming a

fractional shell thickness of 0.1, or a volume filling factor of about 0.25). In all of these models, we

use B1 = 3_G and 17= 10, noting that a higher B1 or lower _/would yield a higher cutoff energy.

In generating this range of emission spectra, we computed a single non-linear shock solution

using the parameters just described (i.e. fixing Emax) plus Ecrlt = 0 and /e = 1 for the electron

injection (i.e. Model e Table 1), and then simply scaled the electron spectral normalization to give

the (e/p)loGev values quoted (this amounts to varying Ecrit and Te,i_ ) and calculated the photon

emission using the densities shown. This approximation will not be accurate for electrons well

below 1 GeV, but the shape (as opposed to normalization) of the electron spectrum above GeV

energies is insensitive to variations in Sedov solution parametem and Ecrit and fe for a given self-

consistent shock solution; hence the gamma-ray components exhibited in Figure 8 are representative

of results of self-consistent shock simulation runs. One caveat is that this is not entirely true for

the (e/p)10cev = 1 cases, since then it becomes necessary to include the effect of the electrons on

the shock dynamics.

It is clear from this set of models that the lack of a prominent pion-decay bump centered at

around 67 MeV in the EGRET data for IC 443 (true also for other sources listed in Esposito et

al. 1996) can only be matched with rip,1 _ 3cm -3 and (e/p)lOC_V _ 0.1. This (e/p)loGev ratio is

larger than is believed to be the case for galactic cosmic rays: (e/p)loc_v _' 0.02 is inferred from

the measured local cosmic ray abundances in the 1-10 GeV range (e.g. M_iller et al. 1995), and also

from modeling of the diffuse galactic gamma-ray background radiation (Bertsch et al. 1993; Hunter

et al. 1997). Thus, the EGRET observations provide significant constraints on the modeling of IC

443. If (e/p)mGev _ 0.1, then values of rip,1 _ 3 cm -3 can provide an adequate fit to the shape of

the observed EGRET spectrum. The slope of the EGRET data argues against parameter regimes

that yield a dominant (flat) inverse Compton component, with bremsstrahlung possessing a spectral

index appropriate to the data; such a conclusion applies to most of the EGRET unidentified sources

in Esposito et al. (1996), and was made by Gaisser, Protheroe, 8z Stanev (1998). It's also clear

from Figure 8 that Our models predict fluxes slightly above the Whipple upper limit. However, if

we had chosen a larger value of r/(i.e., _1= 50-100), or a lower magnetic field, the maximum energy

would have been less and the Whipple point could have been comfortably accommodated. On the

other hand, as we show below in Figure 9, virtually any rip,1 _ 1 cm -3 predicts radio emission

well below observed fluxes. While this might result if the 7-ray emission volume is considerably

less than that inferred for radio, or if there is significant clumping of the magnetic field, it must

be emphasized that all of the above conclusions are based on the assumption that the EGRET

detection of IC 443 is of shell-related emission and this may not be the case.

It is important to note that all of the densities referred to in this paper (such as in Figures 7-10)

with a subscript "1" are true upstream ISM values. The simulation produces downstream densities

for use in the emissivity calculations, and these are the upstream ISM values multiplied by the

total compression ratio. As such, we establish correct normalizations so that the photon emission

spectra actually correspond to the stated ISM densities. This contrasts with the work of Galsser,
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Protheroe, & Stanev (1998), and Sturner et al. (1997), who used power-law distributions, with the

stated ISM density being used as a coefficient for infinite power-laws; no connection between the

power-law normalization and the ISM density can be made in these two papers. Drury, Aharonian,

& VSlk (1994) did introduce bounds to proton distributions, but chose lower limits around 1-10

MeV, well in excess of the thermal values expected from dissipational heating of shocks (e.g. see

Figure 5). Thus, their normalizations (say at 1 GeV/nucleon) and corresponding photon fluxes are

greater than ours -- this can be seen by a comparison of Figure 4 of Drury et al. (1994) and the

middle row of Figure 8 here.

4.5. Broad-Band Photon Spectra

Our focus so far has been gamma-ray emission from SNR shells. However, important infor-

mation and constraints can be gained from broad-band studies of emission throughout the electro-

magnetic spectrum. This has been the approach of Mastichiadis & de Jager (1996) and de Jager

& Mastichiadis (1997), who have examined the remnants SN1006 and W44. While non-thermal

nucleons are only important for producing gamma-rays from pion decay, electrons produce pho-

tons from radio to gamma-ray energies. In Figure 9 we show all of the various photon spectral

components from Model e (Table 1) that formed the basis for the array of examples in Figure 8.

The individual components are again normalized to d = 1 kpc and Vs_R = 1 pc 3, while the total

photon emission (heavy solid line) has been multiplied by 500 for a rough match to the EGRET

data. We depict radio and X-ray observations in addition to the previously illustrated EGRET,

Whipple, and HEGRA data, but omit the OSSE upper limits in the 50 keV-1 MeV band that are

presented in Sturner et al. (1997), since they do not significantly constrain our continuum spectra.

It is important to emphasize that in this plot, we are not attempting a detailed fit to the data, but

rather aiming to illustrate how the various components relate to one another.

There are several features to observe in Figure 9. First of all, for the particular density of

this model (rip,1 = 0.3 cm-a), inverse Compton (dotted line) emission contributes to the spectral

flattening in the EGRET range. Such a flattening, if seen in some source, is therefore not necessarily

indicative of the presence of cosmic ray nucleons, unlike a pion decay bump. Second, normalizing

the overall continuum to approximately match the flux level for the EGRET unidentified source

2EG 30618+2234 that is associated with IC 443 conflicts slightly with the Whipple upper limit but

not the HEGRA array limit (note that the HEGRA imaging telescope upper limits at 500 GeV

reported by Hess (1997) are comparable to those of Whipple). This result depends almost totally

on the maximum energy obtained (i.e. equations [15], [17], and [20]) which, in turn, is a decreasing

function of the parameter r}. A large value of r/could result from environment effects such as

the SNR being contained in a partially ionized region, thereby permitting the shock acceleration

model to comfortably accommodate the constraints imposed by atmospheric (_erenkov telescope

measurements. Third, the electrons that produce the IC gamma-rays also generate the radio to

optical synchrotron emission (light solid line) and the synchrotron spectrum does not extend into
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the X-rays,due to the maximum electronenergy being in the TeV range. As a consequence,itis

actuallythe bremsstrahlungfrom non-relativisticelectronsthatdominates the X-ray signal.This

could potentiallyprovidean-alternativeexplanationto synchrotronemissionfor the non-thermal

X-raysseen inIC 443 (Keohane et al.1997)and Cas A (Allenetal.1997).We obtainX-ray indices

(ataround 10 keV) inthe 2.3-2.7range (e.g.see Figure9),which would nicelydescribethe index

ASCA obtained for IC 443, but are generallyflatterthan inthe X-ray observationsof Cas A and

SN1006 (_ 3 ).Furthermore,the absenceof X-ray linesinSN1006 (Koyama etal.1995),normally

excitedby electronimpact, indicatesa paucityof electronswith energiesof a few keV, whether

from thermal or nonthermal distributions.

The flatteningbremsstrahlungspectralshape athard X-ray energies(e.g.see Figure 10 below)

stronglycontrastswith the sharpnessof X-ray synchrotroncutoffs(Reynolds 1996),providinga

potentialobservationaldiscriminant;evidenceforthissteepeninginRXTE data forSN1006 (Allen

etal.1998,in preparation),supports the synchrotroninterpretation.However, we cautionagainst

automaticallyassuming that non-thermal X-raysfrom shellsare synchrotronradiation.We can

obtainquitesteepX-ray bremsstrahlungspectrabecause of the curvaturein the electrondistribu-

tionthatresultsfrom our non-lineartreatmentofthe accelerationprocess;power-law distributions

generatemuch flatterX-ray spectra(e.g.see Sturner et al. 1997),as suggestedby the top panel

of Figure 7. The curvaturein the electrondistributiondisguisesthe break that naturallyarisesin

the Bethe-Heitlercross-sectionat _ _ m¢c 2. ItisevidentinFigure 9 that the overal!steepnessof

the bremsstrahlungspectrum precludesany attempt to simultaneouslyfitboth EGRET and Ginga

data.

Another obvious property of our particularmodel isthat itfallswellbelow the synchrotron

radiospectrum of Erickson & Mahoney (1985),and as we mentioned above, thismay imply that

the 7-ray emissionvolume isconsiderablylessthan the radio.As forthe spectralshape however,

the model can reproducethe unusuallyfiat(_ 0.35) synchrotronradiospectrum, as indicatedby

the upper dotted linein Figure 9,which isthe synchrotronemissionmultipliedby 6 x 104. Such

a flat radio spectral index is also present in W44 (though in virtually none other of the ,-_ 200

Galactic shell remnants), and was used in the test-particle model of de Jager & Mastichiadis (1997)

to argue that it is too flat to be explained by a shock-accelerated electron population. This is not

necessarily the case, given that non-linear solutions to the Fermi acceleration problem can generate

flat distributions (i.e. flatter than E -2 ). However, the conjecture of de Jager & Mastichiadis

(1997) that a pulsar may inject electrons with the required distribution via its relativistic wind,

thereby circumventing the need to invoke Fermi acceleration at the remnant's outer shock, may

still be correct. For IC 443, Sturner et al. (1997) retained shock acceleration, but included free-free

absorption which produces a flattening at the lower radio frequencies roughly matching the radio

data. Presumably, adding free-free absorption could also provide better compatibility between our

model and the observed radio emission.

The usefulness of considering broad-band emission comes from the fact that a variation in any

single model parameter impacts several wavebands. For example, the radio intensity depends on

!1 IV
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the square of the magnetic field,Sl, but increasingBI, alsomakes electronlossesmore severe,

loweringthe energieswhere the bremsstrahlung and IC emission cut off.Variationsin the ISM

densityimpact allwavebands. As densitydeclines,the maximum particleenergy increases,and the

gamma-ray continuum extendstohigherenergies,but the overallfluxat sub-TeV energiesdecreases

accordingly.With lower densitiesthe inverseCompton component becomes more prominent in the

gamma-ray band, flatteningthe spectralindex.This prominence was emphasized by Mastichiadis

and de Jager (1996)and Pohl (1996)intheirpredictionsthat SN1006 would be a TeV gamma-ray

source.As suggestedby Mastichiadisand de Jager (1996),TeV upper limitsor positivedetections

can constrainthe parameter rl = Arg to valuessignifyingdeparture from Bohm diffusion(i.e.

r/_>_>I). IfsteepX-ray emissionisinterpretedascoming from a synchrotroncutoff,thisdetermines

E_maxB and alsoa combination of B and the electrondensity.Through Equation (15),r/therefore

couplesto B and thegamma-ray inverseCompton fluxmust anti-correlatewith both B and A/r9.

Hence lower bounds to _}are derivablefrom TeV observationalconstraints.These featuresare

illustratedby our cosmic ray knee example shown in Figure 10, whose particledistributionsare

exhibitedin Figure 6.

In additionto allthis,ofcourse,isthe factthat the SNR environment islikelyto be farfrom

homogeneous. Rayleigh-Taylorinstabilitiesbehind expanding SNR shocks (e.g.Jun & Norman

1996) may produce localizednon-cospatialclumping ofthe magnetic fieldand/or density,as exem-

plifiedby the complexity ofspatialmaps of remnants such as Cas A, and differentprocesses(e.g.

radiosynchrotronand pion-decay)may have differentemissionvolumes. Furthermore,while we as-

sumed thatthe remnant shock iseverywhere plane-parallel,a givenremnant shock isexpected tobe

obliqueovera sizablefractionofitssurfacewhere the downstream (interiorto the shock) magnetic

fieldand consequentlythe synchrotronemissivityare enhanced accordingly.Clearly,the surface

brightnessof the radiofluxishighlysensitiveto fieldor densityclumping. Given the complexity

ofthe situationand the interplayofthe variousparameters,we believemore willbe learnedabout

a particularsource by combining a generalfitto observationsover the widest possiblefrequency

band, with detailedfitsto narrow band observations.

To conclude thissubsection,we displayinthe top panelofFigure 11 our remnant evolutionary

sequence (i.e.the spectrashown in Figure 5) in an E2dN/dE format. This illustrateshow the

highestenergy ionsdominate the energydensityofthe system and emphasizes the differencesinthe

electronand proton spectra.The spectrainthe top panel are allnormalized to Rp,iVsk -- 1 cm -2

s-I, and sinceVsk isdecreasing,the populationdensitiesdeclinewith time. Ifwe assume, however,

thatthe emissionvolume isccRs3k,a remarkablepropertyemerges. In the bottom panelofFigure11

we show the totalphoton spectrawith theemissionvolume settoVs_ = R_k (correspondingroughly

to a shellbetween 0.gP_kand Rsk) and the totalemission fluxat earth isapproximately constant

over the time span from 300 yr to 104 yr. This resultisvery similarto the behavior reported by

Drury, Aharonian, & VSlk (1994),whose time-dependent two-fluidmodel generated a more-or-less

constantluminosityin the Sedov phase,and Berezhko & VSlk (1997)(where the integrated7-r_ty

fluxvariesby lessthat a factorof 3 during 1 < tsN_/ttran s <_ 100) and probably resultsfrom the
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evolutionary properties of the Sedov solution.

5. DISCUSSION

5.1. Previous Gamma-Ray Models

Reviews of previous models of gamma-ray emission from SNRs can be found in Baring (1997)

and de Jager and Baring (1997). Briefly, Drury, Aharonian, & V_51k (1994) calculated gamma-

ray emission from protons using the time-dependent, two-fluid analysis (thermal ions plus cosmic

rays) of Drury, Markiewicz, & V61k (1989). They assumed a power-law proton spectrum with an

arbitrary maximum energy cutoff; no self-consistent determination of temporal or spatial limits

to the maximum energy of acceleration was made. In some sense, our results can be considered

complementary to those of Drury et al., since their model includes global spherical shock dynamics,

but does not self-consistently yield an energetic particle spectrum, while our model provides a

fairly self-consistent calculation of the total shock acceleration spectrum, but does not treat time-

dependent dynamics in detail. We find that during much of Sedov evolution, maximal diffusion

length scales are considerably less than a remnant's shock radius, concurring with the findings of

Drury, Aharonian, & V61k (1994).

Galsser, Protheroe, & Stanev (1998) computed emission from bremsstrahlung, inverse Comp-

ton scattering, and pion-decay from proton interactions and only slight differences exist between

our treatment and theirs of the physics of bremsstrahlung and pion production processes, other

than that we include helium. Gaisser et al. did not consider non-linear shock dynamics or time-

dependence and assumed test-particle power-law distributions of protons and electrons with arbi-

trary e/p ratios. In order to suppress the flat inverse Compton component and thereby accommo-

date the EGRET observations of 7 Cygni and IC443, Galsser et al. assumed a high matter density

to enhance the ratio of bremsstrahhng and 7r°-decay flux to IC flux. We have shown (Figure 8)

that the same effect can be achieved without a high density if the primary e/p ratio is reduced.

A time-dependent model of gamma-ray emission from SNRs using the Sedov solution for the

expansion was presented by Sturner et al. (1997). They numerically solved equations for electron

and proton distributions subject to cooling by inverse Compton scattering, bremsstrahlung, 7r°

decay, and synchrotron radiation and included all the radiation processes of Gaisser, Protheroe, &

Stanev (1998) plus synchrotron emission to supply a radio flux. Expansion dynamics and non-linear

acceleration effects were not treated, and power law spectra were assumed. One feature of their

model is the general dominance of inverse Compton emission. This arises because they often have

the same energy density in non:thermal electrons and protons, thereby assuming high e/p ratios;

this appears hard to reconcile with galactic cosmic ray observations, Sturner et al.'s work marks a

significant advance over previous work by introducing cutoffs in the distributions of the accelerated

particles (actually first done by Reynolds 1995, 1996; Mastichiadis & de Jager 1996; de Jager &

Mastichiadis 1997), which are defined by the limits on the achievable energies in Fermi acceleration

!1 ! 1:
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discussed in Section 2.3. Hence, given suitable model parameters, Sturner et al. can accommodate

the constraints imposed by Whipple's upper limits to 7 Cygni and IC 443.

To date, the most complete model coupling the time-dependent dynamics of the SNR to

cosmic ray acceleration comes from Berezhko & VSlk (1997) (based on the model of Berezhko,

Yelshin, & Ksenofontov 1996). They numerically solve the gas dynamic equations including the

cosmic ray pressure and Alfv6n wave dissipation, following the evolution of a spherical remnant

in a homogeneous medium. Only pion decay is considered and the gamma ray spectra, spatially

integrated over the remnant, exhibit some curvature. There are a number of similarities between

this model and ours; we both obtain maximum efficiencies near and above 50% and we both obtain

overall compression ratios well above standard Rankine-Hugoniot values. However, Berezhko &

VSlk argue that systems will naturally be driven to the Bohm limit (i.e. y ,,_ 1), giving them higher

upper limits to the maximum cosmic ray energy than we estimate. Another important difference

between our work and Berezhko & VSlk's, comes from the treatment of particle injection: while this

is automatic in our Monte Carlo technique, affording an elegant connection between the thermal and

non-thermal populations, it is specified by a free parameter in Berezhko & VSlk (1997). Berezhko &

Ellison (1998, in preparation) demonstrate that, for most parameter regimes of interest, the shock

dynamics are relatively insensitive to the efficiency of injection, and furthermore that there is good

agreement between the two approaches when the Monte Carlo output specifies injection for the

model of Berezhko et al. Output particle spectra produced by the two models are then essentially

identical for a remnant's free-expansion phase, though minor differences do arise during the Sedov

phase because our Monte Carlo model does not include the influence of particles accelerated prior

to the Sedov phase. A significant advance in our work here is the inclusion of electrons.

5.2. The Observational Status Quo

Several questions of interest are raised by the current observational situation, the first being

how real are the proposed associations between EGRET unidentified sources and young shell-type

remnants like IC 443, W44, 7 Cygni, W28, the Monoceros Loop, and CTA 1 (Sturner & Dermer

1995; Esposito et al. 1996; Yadigaroglu & Romani 1997)? Second, if the associations are true,

is the gamma-ray emission connected with particle acceleration at the shell? Furthermore, is the

signal above 100 MeV produced by cosmic ray ions or electrons?

The sources detected so far above a few hundred GeV are the nebulae surrounding several

pulsars, namely the Crab, Vela, PSR 1706-44 and PSR 1509-58, and the high latitude supernova

remnant SN1006. With the exception of SN1006, these are likely to be associated with plerionic

emission. The situation is, however, more confused in the GeV and sub-GeV ranges. The candidate

associations identified by Esposito et al. (1996) all suffer from large uncertainties in the EGRET

source positions, localizations that were derived using the point-source assumption. Statistically,

the chance probability of spatial coincidence with the candidate remnants is small: 0.1% for IC

443, 1.4% for 7 Cygni, 6% for W28, and 7.4% for W44 (Yadigaroglu & Romani 1997). Yet, these
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remnantsareoften found in active star-forming sites, amid numerous massive stars and HII regions,

and the chance probability of associating the EGRET source with a close-by OB star or a radio

pulsar is equally small or even smaller (Yadigarogiu & Romani 1997). For the unidentified EGRET

source 2EG J1801-2312, for example, the chance probability of an association with the OB star Sgr

lc or the pulsar PSR B1758-23 is 1.2% instead of 6% for the remnant W28. The relative dimensions

of the remnant and of the gamma-ray error circle may also raise difficulties for the identification

of EGRET sources with known remnants. The 95% confidence positions of 2EG J0008+7307 and

2EG J2020+4026, as measured at GeV and super-GeV energies (Brazier et al. 1996, 1998), are

constrained to within 11 and 8 arcmin, respectively, so that the sources appear unmistakeably

inside their respective remnants, namely CTA 1 and 7 Cygni, which are much larger. Furthermore,

note that systematic errors in the gamma-ray position due to the highly structured background

along the lines of sight to the candidate remnants are very likely. These can be reduced by taking

advantage of the narrower angular resolution of EGRET above 1 GeV, given the significant flux

of the candidates sources above this energy. Reimer et al. (1997) recently adopted this approach

to determine more accurate positions that differ by 1 or 2a from the positions listed in the 2nd

EGRET catalogue (Thompson et al. 1995).

Such improved locations led Brazier et al. (1996) to conjecture that 2EG J2020+4026 is perhaps

associated with a distinct ROSATsource with no optical counterpart that lies within the EGRET

error box: they suggest that this source may be a radio-weak pulsar or a p!erion. There is also

the recent proposal (Brazier et al. 1998) of a pulsar/plerion counterpart to the CTA 1 remnant's

EGRET source 2EG J0008+7307. In addition, de Jager & Mastichiadis (1997) contend that the

EGRET source 2EG J1857+0118 associated with W44 may be of plerionic nature due to the

presence of a radio pulsar and its wind nebula within the 95% EGRET confidence circle. A pattern

seems to be emerging, namely that pulsars or plerionic activity may generate the gamma rays in

half of the remnants tentatively associated with EGRET sources. The statistical conceivability

that pulsars could account for most of the unidentified EGRET sources near the Galactic plane

(Ka_ret & Cottam ].996; Yadigaroglu _ Romani 1997; Mukherjee, Grenier, & Thompson 1997)

currently precludes any assertion stronger than just weak suggestions of GeV emission from two

shell remnants, namely IC 443 and W 28. For this reason, we have used only data for 2EG

J0618+2234 in _assoc__!ation with IC _443 _insome of our spectral plots, principally as a general guide
for the reader in considerations of the emission mechanism: ....

The spectral properties of the EGRET detections cannot presently determine whether the

emission is of ionic or electronic origin. All of the candidate remnants except the source toward

CTA 1 present differential photon spectra in the EGRET band quite consistent with E -2 (Merck

et al. 1996), the source toward CTA 1 being much harder ( E -l"ss+°'Is , Brazier et al. 1998). Based

on the spectra presented in this paper, it seems probable that these slopes exclude inverse Compton

emission as the dominant mechanism operating, and furthermore that pion decay emission is not

overwhelmingly prevalent. Since all of the candidates are known to have massive clouds in their

vicinity and, in some cases, to interact with molecular clouds, perhaps the very proximity of such

Y:II]
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gaseousregions can cast light upon the nature of the energetic particles. Besides H2 line emission,

OH maser emission, collisionally excited by H2 molecules heated by a non-dissipative shock, acts

as a good tracer of shock/cloud interactions. In this respect, it is interesting to note that the three

closest remnants with OH masers, namely IC 443, W28, and W44, belong to the candidate gamma-

ray list (Claussen et al. 1997). The Monoceros loop and 7 Cygni are also classical examples of

remnants colliding with clouds (Pollock 1985; Huang & Thaddeus 1986). While Drury, Aharonian,

& VSlk (1994) concluded that, in the EGRET energy range, _r° decay gamma rays in a 1 cm -3

medium would be drowned in the diffuse Galactic emission, the proximity of large target masses

may give support to a cosmic-ray origin of the emission and its visibility. Sturner &: Dermer (1995)

showed that lr° decay emission meets the bulk energy requirements for IC 443. But enhanced

bremsstrahlung gamma-ray emission in the compressed gas has also been advocated by Pollock

(1985) to account for the COS-B sources seen toward 7 Cygni and W28. Hence, the mere presence

of clouds cannot resolve the ambiguity between electronic and hadronic emission.

The complexity of the morphology and broad-band emission properties of shell-type remnants,

as exemplified by IC 443, currently precludes a comprehensive understanding of the relationship

of shell-associated shock acceleration to the various emission components. However there is one

distinctive property of radio emission that can be discussed concisely, namely the observation that

the radio spectral index flattens from 0.7-0.6 to around 0.3 with increasing brightness across IC

443 (Green 1986). This correlation is consistent with our model: with increasing density, there is

less pressure in the highest-energy particles and the subshock compression ratio increases toward

the canonical value of 4. Therefore, the radio-emitting (GeV band) electrons, which sample the

length scales not dramatically larger than those on which the subshock is established, present a

flatter spectrum concomitant with a rise in synchrotron luminosity. However, it should be noted

that while modified shocks can in principle provide radio synchrotron spectra flatter than 0.5, it

is difficult (but not impossible) for our model to explain such a large amplitude in spectral index

variations in one source.

Turning now to the TeV band, the possibility of either shell-related or plerionic origin of

gamma-rays from the EGRET sources quickly propelled the TeV gamma-ray astronomy community

into an observational program. The absence of any positive detections from the ensuing monitoring

of sources in the Esposito et al. collection, or from other prominent remnants such as Tycho,

spawned a number of potentially constraining upper limits first from the Whipple team (Lessard

et al. 1995, updated in Buckley et al. 1997), and then from HEGRA (Prosch et al. 1995; Hess 1997

for IC 443; and Prosch et al. 1996 for 7 Cygni). As discussed earlier in the results section, SNR

shells can generate GeV gamma-rays at flux levels that would be detectable by EGRET without

conflicting with TeV upper limits if the SNR resides in a region of the ISM of moderate to high

density ( rip,1 _ 1 cm-3). Hence, dense remnant environs, as might be expected for most of the low

galactic latitude sources in the Whipple and HEGRA surveys, might result in luminous emission

in the sub-GeV range coupled with a simultaneous absence of TeV gamma-rays.

Not surprisingly, the first reported detection of probable shell-related TeV emission from a
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remnant came from an entirely different type of SNR, SN1006, a southern hemisphere source at

high galactic latitude that was accessible to the CANGAROO experiment (Tanimori et hi. 1997,

described in detail in Tanimori et hi. 1998). This impressively symmetric barrel-shaped remnant

(see Moffett, Goss, & Reynolds 1993, for example, for a radio image) is probably embedded in a

low density, unclumpy medium, presumptions based upon its geometrical symmetry and its high

latitude. This source had recently provided the first evidence of the presence of super-100 TeV

electrons in SNR shells via the observation (Koyama et hi. 1995) of non-thermai X-ray emission

£by ASCA. Its low environmental density (possibly 0.1 cm -3) clearly enhances the plausibility of

Fermi acceleration to Such high _'energies (as described-in Section 2.3 here). This fact, combined

with the ASCA discovery' prompt_Mastichiadis &deJager (1996) and Pohl (1996) to predict a

strong inverse Compton signal in the TeV band for SN1006, motivated by the comparative efficiency

of this process. It seems probable that the TeV signal from SN1006 is inverse Compton emission,

and therefore confirms the production of cosmic ray electrons by a SNR blast wave, but offers little

evidence for cosmic ray ions. The picture for SN1006 is not entirely simple: Tanimori et al. (1998)

note that their data is strongly asymmetric, with a positive detection of a flux of ,,, 4.6 x 10-12

cm -2 s -1 at energies greater than around 1.7 TeV from the NE rim, and an upper limit of less than

half this value for emission from the SW rim of the shell. CANGAROO is the first atmospheric

(_erenkov telescope to possess such angular resolution capabilities, a property that is crucial to

the inference of the shell association of the emission, and which will form a major goal for future

experimental design. We note that the recent suggestions of non-thermal super-10 TeV electrons

from X-ray observations of Cas A (Allen et al. 1997), IC 443 (Keohane et hi. 1997) and W44

(Harrus et al. 1997) may identify them as prime candidates for future searches with atmospheric

(_erenkov telescopes.

5.3. Super-TeV Cosmlc-Ray Production in Gamma:Ray SNRs?

Two questions are of paramount importance to cosmic ray physicists. First, can individual

supernova remnants simultaneously generate GeV gamma rays detectable by EGRET and produce

cosmic rays to energies above ,,, 1014 eV? Second, if not, could some remnants be gamma-ray

bright while others supply the cosmic ray population? We believe the answer to the first question

may be no. Generally, for SNRs in a homogeneous environment, the circumstances that favor

intense gamma-ray production in the EGRET and sub-TeV bands (namely high ISM density)

limits acceleration of particles to energies well below the knee. Given the total lack of detections in

the TeV band of remnants with associated EGRET unidentified sources, combined with the only

positive TeV detection coming from a source (i.e. SN1006) with no associated EGRET emission,

there seems little doubt that there is an anti-correlation between sub-10 GeV gamma-ray luminosity

and super-10 TeV cosmic ray production in individual sources.

For the supernova remnant population as a whole, the situation is much less clear, and the

second question above remains open. If those remnants associated with EGRET sources are actually
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emitting at such intensities, which may be unlikely given the discussion just above, then they

may well represent a bright minority of cosmic-ray producing remnants. Their peculiarity may

be coupled to their unusually dense environments (as deduced from optical and microwave band

observations), thereby enhancing sub-TeV gamma-ray emission. Thus, since the pion-decay bump

at ,_ 70 MeV cannot be determined with current EGRET data, there is still no direct for the

acceleration of cosmic ray ions to energies of 100 TeV or above. However, whether or not any

of the EGRET detections amount to observations of shell-related emission, the contention that

the vast majority of shell-type remnants can produce cosmic rays out to the knee still remains

tenable. It is also possible that the remnants with EGRET identifications may actually be quite

representative of the SNR population as a whole, producing energetic cosmic rays, but emitting at

flux levels below EGRET's sensitivity; in such a case, alternative origins for the EGRET sources

must be sought.

5.4. Issues and Prospects for TeV Gamma-Ray Astronomy of Shell Remnants

Several issues surrounding the comparison of our models with data require clarification. First,

we remind the reader that the curves depicted in Figures 8-11 are arbitrarily normalized to an

emitting region of 1 pc 3. It is unlikely that the gamma-ray emission in any real source would be

confined to such a small volume. The actual angular size of a source affects the detection sensitivity:

the sensitivities of telescopes like Whipple and HEGRA are typically 3-4 times better for sources

smaller than a few tenths of a degree, which they see as point-Iike, than for extended ones (;_ 0.5 °)

due to better hadron-rejection capabilities and associated improved sensitivities. Therefore, strictly,

the model results for the various components in these figures should be compared with upper limits

pertaining to point-sources. However, we note that such subtleties make little impact on most

comparisons, since small emission volumes underpredict both point and extended source bounds in

the TeV band. Second, observational upper limits are generally integral limits above a threshold

energy, obtained by assuming a power-law spectrum (typically E -2 ) for the underlying source.

Hence they cannot strictly be compared with flux spectra, but we chose to do so remembering that

such upper limits, and their associated flux bounds, may vary with spectral assumptions by factors

of at most 2-3. It should be borne in mind that if the source spectra are steeply declining with

energy in the sub-TeV and TeV band, as is suggested by a number of our models, then the sensitivity

of atmospheric (_erenkov telescopes to such sources drops and the upper limits rise accordingly.

The CANGARO0 observations of SN1006 have dramatically bolstered the prospects for future

positive detections in the 0.3-! TeV range, but these will depend on telescope sensitivity, threshold

energy, and angular resolution. Improved sensitivities and lower thresholds in future experiments

such as CAT (Rivoal 1997), HESS (Hofmann et al. 1997), VERITAS (Weekes et al. 1997), and

MAGIC (Lorenz 1997) are obviously desirable requirements. For example, it is anticipated (Aha-

ronian et al. 1997) that the HESS experiment should achieve a conservative 5a upper limit on

IC443 of 3 × 10 -1_ cm 2 s -1 above 100 GeV, assuming an emitting region of 0.4 ° in radius, almost
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anorderof magnitudebelowthe _ 250GeVlimits of Whipple (Buckley et al. 1997) depicted in

Figures 8-11. Given the general property of rapidly declining spectra near the maximum energies

of emission in most of our models, lower thresholds are of paramount importance. At the same

time, our models and those of Drury, Aharonian, & V61k (1994), yield luminosities that scale with

the source volume so that the total flux from remnants is virtually constant in time during the

Sedov phase (as in Figure 11). Limb-brightening concentrates this flux somewhat towards the

extremities of the remnant, less for IC emission than for the other three processes (due to their

different density-dependences: this could provide an observational discriminant among the emis-

sion mechanisms as gamma-ray imaging capabilities improve). However, as long as the remnant

evolution remains roughly self-similar, the surface brightnesses of both rims and remnant interiors

will decline similarly with age (basically as R_ 2 ,,_ t_-4/s ), so that detectability should be enhanced

in younger remnants.

Of equal or greater importance to the resolving of some of the open questions surrounding

gamma-ray emission from supernova remnants will be improved telescope angular resolution. This

was emphasized by the ability of CANGAROO to unequivocally connect its reported TeV flux from

SN1006 to the NW rim of the remnant, a feat that was not generally possible for the EGRET data

on other remnants. The most detailed study of the angular resolution for future telescopes is found

in Aharonian et al. (1997), with estimates varying from a 0.1 ° radius for 68% acceptance for gamma

rays at 100 GeV down to 0.05 ° at 1 TeV. This implies that spatial features of the order of 1 to 2

pc that are 1 kpc distant could, in principle, be resolved given reasonable data accumulation times.

The CAT, HESS, and VERITAS telescopes will b0_th have angu!ar resolution s close to this_ One big

difference between the existing single dish telescopes (e.g. CAT, WHIPPLE, CANGAROO, etc.)

and future stereo arrays is with the improved hadronic background rejection (as demonstrated by

HEGRA, the only existing stereo experiment). An improvement by a factor of 10 to 20 is afforded

by stereoscopic techniques, whichdirectly translates intoan increase in sensitivity by a factor of_,,, 4.

Given additional bonuses such as greater mirror area and/or finer imaging resolution, sensitivity

increases of factors of 5 to 6 may 1)e attainable. The unquestionable sc(entific impact of resolving

gamma-ray SNR emission should amply motivate developmental programs towards achieving this

technical goal.

6. CONCLUSIONS

:: In this paper wehave applied a well-documented and tested steady-state Monte Carlo simu-
lation of non-linear Fermi acceleration at: plane-parallel shocks to the Problem of gamma-ray and

broad-band emission from shell-type supernova remnants. By coupling the simulation to a standard

Sedov model, which estimates the spherical shock dynamics as a function of remnant age in a homo-

geneous environment, we have obtained a reasonably self-consistent description of a spherical SNR

as it evolves and accelerates particles. A simple parametric model of electron injection and acceler-

ation allows us to determine, for the first time, complete shock accelerated ion (proton and helium)
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andelectrondistributions,andto use them to predict broad-band emission from synchrotron, pion

decay, bremsstrahlung, and inverse Compton processes from radio through the X-ray continuum

into the super-TeV gamma-ray band. The uncertainty in ISM parameters provides a broad range

of model predictions for individual sources.

Our principal results are as follows. (1) We comprehensively treat non-linear feedback effects

between accelerated particles and the shock structure that result in particle spectra (both ion

and electron) which deviate significantly from power-laws. Such deviations are not only crucial

to overall efficiency considerations, but also impact photon intensities and spectral shapes at all

energies, producing GeV/TeV intensity ratios that are quite different from test particle predictions.

(2) We address the electron injection problem in the context of SNRs with a simple and coherent

prescription for connecting observational inferences of the e/p ratio to quantities that relate to

plasma wave and dissipational properties of the shock. The treatment of electrons is particularly

important in the light of the recent observations of SN1006, since it now appears that emission

(X-ray and TeV gamma-ray in addition to radio) from cosmic ray electrons may dominate those

from ions in some (or perhaps most) shell-type remnants. (3) We connect, in a reasonably self-

consistent way, the spectral shape and intensity of gamma-ray emission to the ISM density without

arbitrary coefficients of infinite or semi-infinite power-laws, and for ions, without ad-hoc injection

parameters. (4) We determine the relative acceleration efficiencies of different ion species and find

that, generally, the pion-decay contribution from helium (at cosmic abundances) is comparable to

that of protons, a byproduct of the enhancement of heavy ions in non-linear Fermi acceleration.

(5) Our results exhibit a general anti-correlation between the maximum energy of gamma-ray

emission, and the source luminosity in the super-MeV band; this should be a property of any

self-consistent model of particle acceleration and associated radiation at SNR shocks. (6) Finally,

we also describe the parameters required to give maximum particle energies of a few TeV for ISM

densities near ,,_ 1 cm -3, so as to provide spectral consistency with current upper limits from the

Whipple and HEGRA atmospheric (_erenkov telescopes for remnants with unidentified EGRET

source associations. These parameters are fully consistent with Fermi shock acceleration and do

not produce unacceptably steep particle spectra. At the same time, we can generate models with

low densities (i.e. nl g 0.01 cm -3) that accelerate cosmic rays to above 100 TeV, but with fluxes

below the EGRET and Whipple sensitivities in the 100 MeV-10 TeV band.

While the results we present here are still preliminary in many ways, we believe they form

a basis for future studies of non-linear shock acceleration and gamma-ray emission from shells

of supernova remnants. Unresolved issues include the radial extent of emission, the modeling of

fiat spectrum radio sources, spatial variations in radio, X-ray and gamma-ray spectral indices,

the physical processes responsible for the non-thermal X-ray and gamma-ray flux, the role of field

obliquity around the shell, the e/p ratio and a more complete description of electron injection,

and cosmic ray abundances and production up to the knee. Such studies would anticipate the

development of the next generation of space- and ground-based gamma-ray telescopes with greater

flux sensitivity and spatial resolution.
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A. APPENDIX

APPROXIMATIONS TO ELECTRON-ELECTRON BREMSSTRAHLUNG

In this Appendix, we present approximations to the differential cross-section for electron-

electron bremsstrahlung that expedite our computations, circumventing use of the unwieldy and

lengthy exact results for this process given in Haug (1975). Consider first the relativistic case. We

adapt the approximation derived by Baler, Fadin, & Khoze (1967) which has the form

(AI)

where 7e = (Ee + raec2)/meca isthe electronLorentzfactor,

= i_ 1o, [1÷ %)]
g_

(A2)

and

I 16(l-_vq-_)l°ge(_--_e_---_l q-_3 -4-b4_-8¢_ _]

1 1 3 (A3)o5 = _ -2(1- 2_)log,(I- 2E_)(.-__- _ + --- 2+ 4E_ , E_< I

Here ro = e2/(rn¢c _) is the classical electron radius, _ _- 1/137 is the fine structure constant, and

the ultrarelativistic result of Baler, Fadin, & Khoze (1967) sets A(e._, 7¢) = 1.

As it stands, this expression is accurate only for ultrarelativistic energies: this can be deduced

from Figure 10 of Haug (1975), though it appears that Haug's numerical computations of Baler,

Fadin, & Khoze's formula are slightly in error. Therefore, we add a mildly relativistic correction

factor to equation (A1):

A(¢_,%) = 1-8(7¢-1)1/5('_7")1/33 7¢+1 7¢ (A4)

With this factor included, our expression for a¢_¢ is well within 10% of the exact result of Haug

(1975) for electron energies above 5 MeV.

Equation (A1) is suitable for the consideration of bremsstrahlung contributions to gamma-

rays from SNRs. However, it becomes inappropriate for X-ray and lower energies as the electrons

become non-relativistic. In such regimes, we adopt a modification of the standard non-relativistic

asymptotic forms obtained by Fedyushin (1952) and Garibyan (1953). In the rest frame of the ISM

electrons, their expression for the angle-integrated differential (in photon energy) cross-section is

_ -- 15¢._

1
o < e_ < _ (%2_1), (A5)
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where, for 0<x< 1,

[ 3x 2 ]
B(%) -zL17 (2- x)z vff

J

(A6)

7x 2 3X 4 ] 1 ++ 12(2- x) 2- x (2--x)-_J l°ge _ _ '

specifically with B(%) --- 1 and C(%, x) - 1 for extreme non-relativistic energies. Haug (1975)

notes that such a form is accurate to a few percent for cosmic ray electron energies below around

10 keV. Accordingly, we add the mildly-relativistic correction factors

1 a C(%, x) = 10X%pe(2+ %_e) (AT)
B(%) = 1+_(7_-1) ; l+x2(_'_,l) '

which render the cross-section in equation (A5) accurate (compared with Haug's numerical eval-

uations of the full cross-section) to within 10% for Ee < 500 keV, and is also of comparable

accuracy for all but the highest photon energies (which yield insignificant contributions to the total

bremsstrahlung spectrum) for E_ up to a few MeV. Hence, equations (A5)-(A7), together with

equations (A1)-(A4), provide a description of ae--e that is suitable for the purposes of this paper,

for all Ee ; we switch between the two asymptotic regimes at Ee = 2 MeV.
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TABLE 1

PARAMETERS FOR EVOLUTIONARY AND COSMIC RAY EXAMPLES

Parameters Model a Model b Model c Model d Model e

£SN [i0slerg] 1 1 1 i0 1

Mej [Mo] 1 1 1 10 1

np,1 [cm -3] 1 1 1 10 -3 0.3

B1 LuG] 3 3 3 10 3

r] 10 10 10 1 10

tssa [yr] 300 1000 1 x 104 4 x 104 5000

V_k [km S -1] 4000 2000 490 1340 940

R,k [pc] 3 5 12.5 140 12

r 20 17 11 6.5 11

rsub a 2.73 2.68 2.54 4.43 2.65

Ecrit [keV] 100 100 100 0 0

fe 1 1 1 0.05 1

Te,inj [K] 4.8 x l0 s 1.5 x l0 s 1.9 x 105 1.0 x l0 s 8 x 10s

(e/p)loGev 0.044 0.11 0.13 0.02 0.03

dFEB [TIrSl] 5.8 x l0s 4.4 x I07 5.7 X 108 7.2 x 101° 2.8 x 10s

dFEB [pc] 0.26 0.97 3.1 33 3

Emax [TeV] 2.9 5.2 4.2 4.1 x I03 8

NOTE.-- (a) The subshock compression ratio, r,ub,is determined by rsu b "-

U(Z = --I r}rgl)/Vsk.
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Fig. 1.-- A schematic depiction of a non-linear shock profile, which shows the flow speed versus

distance normal to the shock in its rest frame. This artificial shock profile has an overall compression

ratio of/'total = 4 and two subshocks with re_ = 3 at x = -10 r/rgl and refr = 2 at x = -0.2 r/rsl.

The shock speed is V_k = 6000 km s -1, which just acts as a scale to the system. The arrow indicates

the minimum upstream diffusion length for the Pcrit ---- 1.5 X 10 -3 mpc electron example shown with

the dotted line in Figure 2. All electrons from injection energies upward diffuse farther upstream

that -0.2 r/rgl for this example.
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Fig. 2.-- The number density in scalar momentum space, f(lP[), versus IP]. We have plotted

]Pl 2"s f(IPl) to flatten the spectra. The momentum is in units of mpC. The upper solid curve is the

proton spectrum, while the two lower curves are electron spectra. The dashed electron curve results

from Pcrit - 0, while the dotted curve results from Petit - 1.5 × 10 -3 mpC, for which e- injection

is more efficient. In all cases, particles are injected at the shock with a S-function distribution at

1 keV. The heavy vertical lines indicate the momenta corresponding to upstream diffusion lengths,

-LD = -0.2 _?rgl and -10 _rgl. The slopes of the power-law portions reflect those obtained from

equation (4) with the values of re_ in Figure 1.
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The lower three heavy curves (a) are calculated with rip,1 = 1 cm -3 using g = 0 (dot-dashedc_rve,

corresponding to no time spent downstream), g = 1/r _ 0.12 (solid curve), and g = 1 (dashed

curve). The heavy curve labeled (b) uses rip4 = 0.01 cm -3 with # = 1/r. The upper most heavy

curve has parameters chosen to obtain a high maximum energy. The light dotted lines show the

maximum energy versus SNR age electrons will obtain under the influence of synchrotron and

inverse Compton losses; see ecluation (23). The light dotted llne at the lower left applies to the

lower three heavy curves (a), the middle light dotted line applies to the middle heavy solid line (b),

and the rightmost light dotted line applies to the top solid line (c).
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Fig. 4.-- The bulk flow speed versus distance (i.e. shock velocity profile), obtained in the Monte

Carlo simulation. Three of the four profiles correspond to Sedov evolution of a remnant's shock

with given ISM parameters, namely rip,1 - 1 cm -3, B1 - 3#G, and with r/= 10 and g = 1/r.

These comprise the heavy solid curve (Model a in Table 1, with r = 20), the heavy dashed curve

(Model b in Table 1; r = 17), and the heavy dot-dashed curve (Model c in Table 1; r = 11). The

shock weakens slightly with time, and for comparison, we depict a standard linear (test-particle)

strong shock profile with a compression ratio r = 4 as the light dashed step-function. As a separate

example, the heavy dotted curve shows the structure for a shock capable of accelerating particles

to the cosmic ray "knee" at ,._ 10is eV (Model d in Table 1), with different ISM parameters. In

first three examples, a distinct subshock exists with a compression ratio r,ub " 2.5. The cosmic ray

energy shock (dotted line), however, has a much stronger subshock (rsub _,, 4.4) due to the strong

Alfv6n wave heating in the precursor. Notice that the distance is plotted with a logarithmic scale

for x < -10_rgl and a linear scale for x > -10r/rgl.
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nucleon for ions and versus energy for electrons (A -- 1 for electrons), obtained from our example

of an expanding remnant in the Sedov phase (see Table 1 for model parameters). All spectra are

calculated downstream from the shock in the shock rest frame and are obtained as explained in

the text with a steady-state approximation. In each panel, the solid and dashed lin_es show the

hydrogen and He spectra, respectively, and the dotted line Stows the electron spectrum. Both+2 .............

ionic species contribute to the shocksmoothing and the far upstream'number densi-tyo-f_ellUm is

1/10 thatof hydrogen. Whecurvesare normalized such-that Vsknp,1 = 1 cm -2 s -I. The electrotl

spectra_are obtained with Ecrit = 10OkeV and/e = 1. As the remnant evolves, the shock slows and

weakens, and the injected electron temperature T_,i,j diminishes in accordance with the decline in

the dissipative heating of ions (for fixed/e) in the shock layer.
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Fig. 6.-- Particle spectra, dJIdE [particles/(cm2-s-ster-MeV/A)], versus energy per nucleon for

ions (or energy for electrons with A _= 1). The solid line is the proton spectrum, the dashed

line is the He 2+ spectrum, the dotted line is the electron spectrum, and all spectra are calculated

downstream from the shock in the shock rest frame. The parameters (i.e. Model d) have been

chosen to produce particles with energies above 10 Is eV to account for cosmic rays up to the knee.

The electron spectrum cuts off at lower energies than the proton or helium because of significant

synchrotron and inverse Compton losses (see Figure 3).
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Fig. 7. Examples of photon emission spectra, plotted _ E_ dn.y(E._)/dt to emphasize the peak

power of emission. The'top panel is p_0du-ced using power-lawelectr0n and ion spectra with identi-

cal normalization to thatusedinFigure 3 of Gaisser, Protheroe, & Stanev (1998). These "template"

curve s re.produce their results quite - well, with small differences in the pion decay emission (p-p)

and e-p bremsstrahlung due to different assumptions in-modeling tl_ese components. The bottoin

two panels depict sample photon spectra producecl by our self-consistent shock-accelerated electron

and ion (proton and He 2+) distributions. Themiddle panel is Model b of our evolving remnant

trio, and the bottom panel is Model d, which produces cosmic rays up to the knee. Comparison

of these two models indicates that density and other changes can strongly influence the relative

importance of inverse Compton scattering versus bremsstrahlung and pion decay radiation. In all

panels, dotted lines are inverse Compton (IC), dot-dashed lines are bremsstrahlung, long-dashed

lines are pion-decay from protons, short-dashed lines are pion-decay from helium, and the solid line

in the bottom panel is the total pion-decay emission.
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Fig. 8.-- An array of emission spectra generated from Model e (Table 1), illustrating trends in the

parameters np,1 and (e/p)10¢ev ; these are compared with observations of the shell remnant IC

443. The data points are from EGRET observations of 2EG J0618+2234 (Esposito et al. 1996),

and the upper limits are from the Whipple imaging telescope (Buckley et al. 1997) and the HEGRA

arra_/(Prosch et al. 1995) as marked. In all panels, dotted lines are inverse Compton, dot-dashed

lines are bremsstrahlung, dashed lines are the total pion-decay emission from protons and helium

(denoted hereafter by p-p), and solid lines are the sums of the three components. The model spectra

are normalized to a source at 1 kpc with emission volume = 1 pc 3.
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Fig. 9.-- Photon spectra for the various em!ssion processes (pion decay from p-p, p-He, and He-

He collisions [denoted by p-p], bremsstrahlung, inverse Compton, and synchrotron radiation, as

labelled, with the same line styles as in Figure 8) for our np,z = 0.3 cm -3 Model e used to generate

the examples in Figure 8. The component spectra are all normalized to a source at 1 kpc with

emission volume = 1 p@, but the total spectrum (heavy solid line) is multiplied by 500 to roughly

match the EGRET flux. Whipple (W) and HEGRA (H) upper limits are referenced in the text and

in Figure 8. The Ginga data point is from Wang et al. (1992) and the radio data (labelled E & M

85) are from Erickson & Mahoney (1985). The GeV/TeV flux ratio Fcev/FT_v = 590 obtained in

this model is slightly lower than that expected for an E_ 1 flux power-law due to the prominence

of the IC contribution.
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The linestylesforthe variouscomponent spectraareasinFigure9,asare the data. The component

curves are allnormalized to 1000 times a sourceat 1 kpc with emission volume -- 1 pc3, but the

totalspectrum (heavy solidline)ismultipliedby 2.5× 106 (bottom panel)to givefluxesmore-or-

lesscomparable to the EGRET levelsfor IC 443. Note that sincethe densityisvery low in this

example, inorderto givea high Emax, the inverseCompton component isveryprominent,yielding

a low FGeV/FTeV flUXratio.As inFigure 9,the p-p pion decay spectrum includescontributions

from p-He and He-He collisions.
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Fig. 11.-- The evolutionary sequence corresponding to three of the profiles in Figure 4, and

the particle distributions in Figure 5 (i.e. Models a, b, and c). The top panel shows the s-a-me

proton (solid, d_h_i_anddash-dot histograms)and electron:idotted histograms)spectra shown in

Figure 5, but multiplied by E 2 to illustrate that the maximum energy density is in the highest energy

protons. The b0ttom panel shows the total photon emission (i.e. the sum of the bremsstrahlung,

inverse Compton, pion decay, and synchrotron emission) for these models with a source volume,

Vs,R = Rs3 (for each time) and a source distance d = 1 kpc. This illustrates a property, probably

the consequence of Sedov evolution of a SNR, that the X-ray to hard gamma-ray photon spectra

are virtually independent of time between 300 and 10,000 years of age.
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